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ABSTRACT 

A new object-based method of measuring multiple-point connectivity is based on 

fitting power law (fractal) models to cluster size distributions. The multiple–

point connectivity (implicit to the cluster size distribution) is fully described by 

the scaling factor and fractal dimension of the power model fitted to 

experimental data points. A vector interpretation of the power models indicate 

that they form the upper probability bound of traditional multiple-point 

connectivity measures. This new multiple-point measure is demonstrated for: (1) 

characterising the spatial continuity of mineral deposits; (2) selecting 

conditional simulation algorithms; and (3) post-processing stochastic images. 

 

 
 

INTRODUCTION 

Specific multiple-point (n-point) connectivity measures were introduced by 
Journel and Alabert (1989) as the expected value of the product of n indicator 

variables, i.e. the n-point non-centered indicator covariance is: 
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where Π represents a product, the n points are separated spatially by a fixed 

vector hA, and I(x;zk)=1 if the RF Z(x)≥zk and 0 otherwise. Unlike bivariate 

measures of spatial continuity, δ(h;zk) cannot be modelled in two or three 

dimensions.  Consequently, its value is limited to the explicit definition of h.  
The connectivity measure in (1) was expanded by Deutsch (1992) to include n-

point configurations with variable separation vectors and threshold values as: 
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where h1,...,hn are n separation vectors, with by convention h1=0, and z1,...,zn are 
n threshold values. 
 

(1) and (2) can be interpreted as the probability that the n values are jointly 

above zk, provided that zj=zk for all j in (2) (assumed for the remainder of the 
paper).  To compare directly the connectivity at different threshold grades (1) 

and (2) can be standardised by dividing by the expectation of the corresponding 

indicator random variable: 
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(3) and (4) are then interpreted as the probability that the n values are jointly ≥zk 
given that x is ≥zk. As E{I(x;zk)} may vary ergodically between simulations, (3) 

and (4) also enables the direct comparison of connectivity between multiple 
simulations for specific zk. 

 

A significant practical problem with the use of connectivity measures shown in 

(3) and (4) is that if the continuous variable z is discretised into K classes, there 
are K and Kn possible measures of δR and ψR respectively for each (implicit) set 

of separation vectors. Consequently, (3) and (4) are rarely used in geostatistics 

except for the posterior calculation of multiple-point statistics of stochastic 
images. The exception being in objective functions of combinatorial 

optimisation algorithms (COA), where the Kn product tends to impose practical 

limitations due to limited computer memory (eg Deutsch, 1992; Deutsch and 
Gringarten, 2000). When considering multiple sets of separation vectors these 
practical limitations are further deteriorated. Hence, a connectivity measure that 

is vector-independent may be of significant practical importance. 

 

 
A NEW OBJECT-BASED APPROACH 

Consider the local indicator values plotted in Figure 1 for the Walker Lake 

dataset. We denote a contiguous set of locations (or geo-object or cluster) for 

which i(x;zk)=1 as g(zk)=m, where m is the number of adjoining locations. For 
example, in Figure 1 the largest geo-object is grey. Figure 1 shows that any 

number G<N (the total number of locations) of such geo-objects exist. 
Algorithms for determining the clustering of 3D objects is outside the scope of 

this paper, see Mehlhorn (1984) and Deutsch (1998). If we consider the n-point 
configurations in (3) and (4) as the vector identification of geo-objects, we can 

interpret δR and ψR as the probability of belonging to a geo-object of size m≥n, 

provided that the separation vectors h1,...,hn define adjoining locations. Hence, 

geo-objects contain implicitly some multiple-point connectivity information. 
 

Figure 2 shows that geo-object size distributions may closely follow power-law 

(fractal) models, defined as: 
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where Gm is the cumulative number of geo-objects ≥ m;  is a scaling factor 

function of the geo-objects in the study area A, and β is the fractal dimension of 

the geo-object population that defines the relative number of large and small 

geo-objects. In (5), when  is high the number of geo-objects is high, and when 

β is high the number of small geo-objects is high relative to the number of large 

geo-objects. In Figure 2, note that  and β vary with the indicator threshold 

value zk, and the experimental data points close to the x-axis tend to deviate 

somewhat from the fitted models. The variability of  and β characterise the 

multiple-point connectivity of nodes at the various threshold values. The bottom 

end deviation is known as a truncation effect, and is due to limitations on the 
study area A. 

 

The information in Figure 1 can be used to calculate the probability p(m;zk) that 
a location x belongs to a geo-object of at least size m, given that z(x)≥zk, where 
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which calculates the probability that a location is jointly connected to at least n 

other points ≥zk. If the geo-objects are all one-dimensional with orientation , 

then p(m;zk)=δR(h;zk) if h=. Hence, the probabilities p(m;zk), m=1,…,M also 
form the upper bound of the vector-based measures δR and ψR, i.e. δR(h;zk) and 

ψR(h1,...,hn;zk)[0, p(m;zk)], n=m. Thus, (5) could be considered analogous to an 

omni-directional indicator bivariate measure of spatial continuity. Furthermore, 

just as the bivariate spatial continuity is fully defined by the parameter values of 
the variogram model, the multiple–point connectivity (implicit to the cluster size 

distribution) is fully described by the scaling factor  and the fractal dimension β 

of the fitted power model. 
(5) provides an easy and valuable tool for measuring and validating the multiple-
point statistics of pixel-based simulation algorithms. In addition, the practical 

limitations of vector-based multiple-point continuity measurements in COA are 
removed, allowing rapid post processing of stochastic images.  

 

 

EXAMPLES 

The connectivity of data extremes in the simulated images is of particular 
interest when the realisations represent metal values in an ore body that is being 

mined with a high cut-off grade.  Geo-object distributions at 0.87% Cu (±90th 

cumulative percentile) for 3 benches in a copper mine are shown in Figure 3. 

The geo-objects were determined from grade control data adjusted to a regular 
grid. Note that, β was consistent at around 1.05 for these 3 benches selected at 
50 m vertical intervals. This has two important implications for their imaging by 
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conditional simulation (CS). Firstly, for deeper parts of the mine (or analogous 
mineral deposits) the CS algorithm chosen should result in stochastic images 
with β ≈ 1.05 for 0.87% Cu (±90th cumulative percentile). Secondly, if the 

adopted CS algorithm results in an unsuitable β, then the stochastic images 

should be post-processed to more accurately reflect the adopted power law 
model. 

 

Figure 4 shows the experimental power law models for three sequential 

simulation realisations generated from a subset of an exhaustive image using 
Gaussian (SGS), Mosaic (SMS) and Indicator (SIS) RFs. Note that, the high 

entropy Gaussian RF results in the highest β value, the Indicator RF produces the 

lowest β value. The Indicator RF image most closely represents the geo-object 
distribution of the original image. Figure 5 indicates that SGS is a poor CS 
algorithm choice for the Walker Lake dataset if reproducing the connectivity of 

high valued samples is important. 
 
If images from alternate CS algorithms cannot reproduce reasonably the adopted 
power model then post-processing by COAs is an option. The optimisation 
constraint used could be the reproduction of either the experimental or modeled 

(7) geo-object size distributions, i.e. minimisation of an objective function (OF) 
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where M is the number of geo-object sizes to consider, ref and * represent the 

reference and current images, tj is the tortuosity of geo-object j, and w wβ, and 

wt are the OF component weights. The last component of the OF was key in 
controlling the “texture” of the geo-objects during computational experiments. 

Low values of wt result in highly anastomosing or “sieve-like” geo-objects. 

Conversely, geo-objects with compact textures result from high values of wt. 

 
 

CONCLUSIONS 

A vector-independent multiple-point measure was proposed that demonstrates 

significant promise in characterising stochastic images in a computationally 
tractable manner. This new object-based multiple-point measure requires the 

fitting of a power law model to geo-object distributions calculated from 

complete stochastic images. In practice, these parameters could be calculated 

from a training image or adopted from an adjacent area or similar deposit. The 
power law models provide support for selecting CS algorithms and can be 

incorporated in objective functions when using COAs  
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Figure 1:  geo-objects for 90th cumulative % (gray/black ≥ 784; white < 784). 

 

95th cumulative sample %
log(Gm) = 2.74 - 1.03log(m)

99th cumulative sample %
log(Gm) = 2.45 - 1.34log(m)

90th cumulative sample %
ln(Gm) = 2.81 - 0.89ln(m)
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Figure 2:  geo-object distributions and fitted power models. 
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Figure 3:  Geo-object distributions for 3 benches in a copper deposit. 
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Figure 4:  Geo-object distributions for alternate RF models. 
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Figure 5:  Geo-object distributions for SGS realisation and reference Walker Lake dataset. 


