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ABSTRACT

In many mines it is the geological (lithological) uncertainty rather than the grade
uncertainty that has the greater economic significance. In the absence of precise
knowledge of the deposit geology, geological models of these types of deposits that
are used to constrain spatially the estimated (or simulated) grade values may influence
significantly the contained metal. Methods for assessing geological uncertainty
quantitatively are rarely considered due their perceived inability to consider exhaustive
geological interpretations, and resulting models often appear geologically unrealistic.
Multiple-point statistical approaches that produce realistic geological models call
for geological training images (analogues such as geological interpretations).
However, these training images are used to condition (influence) locally the resulting
geological models based on global geological characteristics rather than interpreted
local geological features.

It is proposed to integrate a simple algorithm into the well-known sequential indicator
simulation (SIS) algorithm to correct locally the simulated realisations for geological
interpretations. The algorithm is called local self-healing because the correction is
administered with the aid of a priori local distributions, and the size of the correction
depends on the magnitude of the problem (local confidence in the interpretation).
This new approach to stochastic simulation of lithology and its impact on contained
metal is demonstrated for a lode-style gold deposit.
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INTRODUCTION

Stochastic simulation of lithology (or geology) may be desirable to account
quantitatively for lithological controls on mineralisation. For example, the spatial
distribution of gold grades is often controlled by quartz vein sets in lode-style
deposits. Simulated models of such deposits must incorporate all sources of
uncertainty rather than simply the uncertainty modelled by the variogram of sampled
gold values. In many cases it is the lithological uncertainty that has the greater
economic significance. For example, in lode-style gold deposits quantifying accurately
the financial uncertainty relies on the ability to locate and define spatially the
individual lodes. In the absence of precise knowledge of the lode geometry the space
of uncertainty in the simulated gold values may be significantly over/underestimated
if a single deterministic geological interpretation is used to constrain spatially the
simulated gold values.

Consider the drill-hole data and the geological interpretation shown in Figures 1
and 2 respectively. Stochastic images conditional to the drill-hole data (Figure 3)
generated by sequential indicator simulation (SIS) cannot account for the geological
interpretation. This can be observed by comparing each SIS realisation in Figure
3 to the left-hand plot in Figure 2. Note that, all stochastic images in this paper
have been cleaned using a maximum a posteriori algorithm (Deutsch, 1998). As
the geological interpretation is exhaustive an indicator cokriging system (ScIS) would
be unstable. Furthermore, ScIS is unable to account for the uncertainty (or confidence)
in the geological interpretation, shown in the right-hand plot in Figure 2. A colocated
cokriging framework would ignore the geological interpretation at simulated locations
other than the drill sample locations. Plurigaussian simulation can account for
complex geological relationships stochastically (Skvortsova et al., 2000), but not
exhaustive secondary information. This drawback is also a feature of most heuristic
algorithms (e.g. simulated annealing, local search) and object-based algorithms (e.g.
boolean, marked-point models). Srivastava (2005) discussed a complex indicator
probability field simulation approach that considered locally varying anisotropy
and families of variogram functions to generate plausible two-phase realisations.

Multiple-point statistical approaches to sequential simulation (eg Arpat and Caers,
2004) that produce realistic geological models call for geological training images
(analogues such as geological interpretations). However, these training images are
used to condition (influence) locally the resulting geological models based on global
geological characteristics rather than interpreted local geological features.

Consequently, local geological interpretations in which great confidence is placed
may not be honoured. Some simple method of incorporating the geological
interpretation and its local confidence in stochastic simulation would represent an
improvement over current techniques for simulating categorical variables.
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Figure 1: Drill hole data: (left) lithology; and (right) gold assays (ppm).
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Figure 2: Geological interpretation (left) and confidence (right) (Note: higher values indicate

lower confidence).
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Figure 3: SIS realisations.
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The specific problem that is addressed in this paper is the stochastic simulation of
categorical variables that are geologically realistic and accurately represent the
geological uncertainty. It is proposed to integrate a simple algorithm into SIS to
correct locally the simulated realisations for geological interpretations. The algorithm
is called local self-healing because the correction is administered with the aid of a

priori local distributions, and the size of the correction depends on the magnitude
of the problem.

SEQUENTIAL INDICATOR SIMULATION WITH LOCAL SELF-HEALING

Consider the a priori local distribution at location x associated with the geological
interpretation (pk(x)¢) and indicator kriging (IK) estimate (pk(x)*), shown in Figure
4 for three lithologies, A, B, and C. Note that, in this paper the a priori local
distribution at location x is considered only to be the local (point) interpretation,
however, it could easily be expanded to consider the local neighbourhood. The idea
of local self-healing is to modify the indicator kriging (IK) distribution to account
for the geological interpretation. Straightforward Bayesian updating and minimising
the cross-entropy (Kullback, 1959) would invariably provide an a posteriori
distribution identical to the geological interpretation. A possible solution is to
minimise the directed divergence between p(x)¢ and pux)’, ie.

minimise D(x) = D*(x) + D"(x) (1)

where

D¥(x) = |pu(x)*-pu(x)‘|, the divergence between the geological interpretation and an

a posteriori corrected distribution;

D(x) = |pu(x)"-pa(x)‘], the divergence between the IK estimated and a posteriori
corrected distributions; and

pi(x), k=1,...,K are the a posteriori or corrected probabilities.
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Figure 4: Lithological distributions: (A) geological interpretation; (B) IK estimate; and (C)
corrected.

Figure 4(C) shows one possible solution to Eq. (1), where D& and D*¢ are represented by
horizontal and vertical hatching respectively. In fact, for this simple example there exists
an infinite number of feasible solutions to Eq. (1), given by,

AD¥(x) = (1- ND(x) )

where A (0 A 1) is a weighting parameter. If A is known, then it is trivial to calculate
the corrected probabilities pi(x)°. It is proposed to interpret A as the level of confidence

in the geological interpretation. Then, SIS with local self-healing (SISLSH) for K lithologies
proceeds as follows:
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i K indicator datasets
f the observed datum s(xq) into . dic: K
8 r{ilglcn'?c)oirln...,n; k=1,...,K} using a binary transform i(xe;k)=1 if s(x)=k, and
zero otherwise .
i i -value exists.

Randomly select a location xp at which no s-va t - .
Di?erminz the K conditional probabilities Prob .{(S(x;;)—klgn)}—pk(xg) , kl—l,...,K
using IK and 7 indicator transforms of the original data i(x«;k) or previously

imulated locations '(xp;k) .
4. 2orliect the local probabilities from step (3) to account for the geological

interpretation, i.e.:

5. ) = (1M )pe()” + Map)puCr, k=1,.0.K 3)

S

where pi(x)¥=1 is the geological interpretation andA(xp) (0<M(xp)<1) is the
eological confidence. . -
6 gBuild%l cumulative distribution function of s at x with probability interval [0,1]
and K intervals:

B &l c 4
[0, pr(xp)’s pr(Cx) TP2xp)’s. oo 2 PHOB) 1] 4)
i l(x) from the distribution generated in step 5
g. %?i%dotrﬁ}ay S{gyﬁﬁggguljﬁﬂg/a&ge flg)éﬁ)KrOconditioning indicator datasets,
e (k)= if s'(xp)=k, and zero otherwisek=1,..K o
9. Repeat steps 2 through to 7 until a complete image of S(x) is produced.

Obviously at observed locations (x«=xp) )\(xﬁ)d=1, and tixe e;tli(r?iagsié E;(;E?E;ltt}:i
i i i erty o .
are not required. Alternatively, the exactitude prope e o
(xp) =i(xa;k)=1, k=s(x4), o=p. At non-observed locations (Xp) )
lr)égytcﬁi)cticigfor)pk(x)&l and pe(x)*=0 for k”#k. Thus, probablllstlc-based geo%ggllcal
interpretations or local neighbourhoods based on user-defined templates could also

be considered.

‘ alisations conditional to the drill-hole data (Figure 1), geological
;I;l}tlésgrseltzhilr_ll (rFeigure 2), and confidence in the interpretation (Figure Z)rr?er:eil(;vgg
in Figure 5. These realisations were generatgad Wlth the ﬁame paraide ers and
simulation path as the SIS realisations shown in Figure 3, hence prov
comparison between SIS and SISLSH. Note that:

o The SISLSH images in Figure S appear geologically realistic, when compared to
the geological interpretation (Figure 2).
e Locally varying anisotropy is honoured implicitly.
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Figure 5: SISLSH realisations.
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CASE STUDY

Figure 1 represents underground drill-hole data from a lode-style gold deposit that has
been modified to maintain confidentiality. The lode in the central part of the plot is known
to be a folded quartz vein, as shown in Figure 2. The rest of the geological interpretation
simply joins the drill hole intercepts with essentially straight lines. However, at the higher
levels, mining has shown that the lode commonly pinches out. The disseminated material
represents quartz stringer veins in altered host rock that contain low grade gold mineralisation

that is rarely economic. . o
To evaluate the impact of lithology on the contained metal, 500 realisations of gold values

were generated with sequential Gaussian simulation (SGS). Two scenarios were considered:

1. the geological interpretation (Figure 2) was used as a deterministic wireframe to
constrain all 500 SGS realisations; and

2. the geological interpretation and confidence (Figure 2) were used to generate 500
SISLSH models of lithology. Then, each SGS realisations was constrained to an
alternate SISLSH model.

Figure 6 shows the distribution of metal content within one lode for both scenarios. Note
that, the expected metal content is the same at 225,000 ounces (0z) of gold. However, the
uncertainty in metal content is significantly higher when the uncertainty in lode geometry
is considered. Figure 6 shows that when uncertainty in gold grades is the sole risk criteria
considered, the lode may contain 166,000 to 293,000 oz. When both gold grades and lode
geometry are used to consider risk, the lode may contain 152,000 to 330,000 oz. Thus,
by considering lode geometry there is greater downside risk and upside potential.
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Figure 6: Histograms of metal content (oz x 10°).
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CONCLUSIONS

This paper presented a simple methodology for probabilistic modelljng the .geologllcal
architecture of a mineral deposit using a modified sequential indicator 51mu1at.10n
algorithm. It is useful in relatively sparsely drilled deposits where the ggologlcal
correlations between drill holes can be established with reasonable certainty, bL}t
the precise location of economically significant geological domain boundaries is
uncertain. The methodology accounts implicitly for interpreted locally varying
anisotropy.

A probabilistic treatment of geological domains will improve the evaluation Qf
mineral deposit uncertainty and risk assessment. The case study prese.nte.d.m this
paper demonstrated that by considering lode geometry uncertainty, s1gn1f1§antly
greater downside risk and upside potential was present in the gold deposflt Fhat
previously recognised by simply considering gold grade uncertainty w1t.h1.n a
deterministic wireframe. A recent study by Srivastava (2005) contained similar
observations. The consideration of geological uncertainty in mineral deposit risk
assessment should be a primary focus, and not ignored as the present common

practice.
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