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Abstract

The primary goal of calculating experimental variograms in kriging studies is to estimate the required variogram
model. The destructuring effect of preferentially clustered data on the sample variogram is well-known but rarely
considered in their experimental calculation and modelling due to a lack of suitable two-point declustering methods.

This paper presents two methods of declustering that can be used to weight data pairs in experimental variogram
calculations. Firstly, the traditional cell declustering method is extended to the two-point case, and secondly, data
location clusters are identified and then explicitly used to determine declustering weights for data pairs. Experimental

variograms calculated for a small, preferentially clustered and strongly positively skewed dataset show structural
improvement when the two-point declustering weights are considered, resulting in significant changes to the estimated
variogram model. Computer programs that implement the proposed two-point declustering and experimental

variogram weighting techniques are presented. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

Kriging regards the continuous function zðxÞ as a
realisation of a stochastic process or continuous random
function ZðxÞ; defined on the study area A; which

satisfies the intrinsic hypothesis:

EfZðxÞ � Zðxþ hÞg ¼ 0 8x; xþ hAA ð1Þ

and for any fixed displacement vector h (distance hj j and
direction y),

gðhÞ ¼ 1
2var½ZðxÞ � Zðxþ hÞ� 8x; xþ hAA: ð2Þ

The two-point function g of Eq. (2) is called the

variogram, which is said to be isotropic if it depends
only on the modulus of h; and anisotropic if it depends
on both the distance h and the direction y: In this paper,

the two-point terminology is used as the two random
variables, ZðxÞ and Zðxþ hÞ; in Eqs (1) and (2) relate to

the same attribute z at two different locations, x and
xþ h; rather than to two different attributes. In practice,

the sample variogram #g is most commonly used to
estimate the variogram g; which is required for kriging.
For a sample design consisting of n data locations

fxa; a ¼ 1;y; ng; there exist Nd data pairs ðxi; xi þ dÞ
that are separated by distance d, where h� epdohþ e:
The distance d is used to provide distance classes of data
location pairs. In practice, this is achieved by using

distance and angle tolerances for the displacement
vector h: The sample variogram is then defined as

#gðdÞ ¼
1

2Nd

XNd

i¼1

½ZðxiÞ � Zðxi þ dÞ�2: ð3Þ

If ZðxÞ is sampled at the n locations, providing specific
observed values fzðxaÞ; a ¼ 1;y; ng; which are then

substituted for their corresponding random variables
in Eq. (3), an estimate is produced. This estimate is
calculated for a finite number of values of d ; and the

resulting experimental variogram is then modelled to
provide a complete estimate of gðhÞ:
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An implicit goal of sampling geological phenomena is
to obtain data from which the variogram g can be

estimated for kriging purposes. The requirement being
to identify the type of variogram model (e.g. spherical or
exponential) and the parameters of the variogram model

components (e.g. nugget effect and sill). The modelling
of g is an iterative process that involves changing the
values of variogram model components to find the
perceived best fit of g to #g:
Reliability measures for the satisfactory estimation of

the variogram are usually restricted to the number of
data pairs for each distance d: This has resulted in

several techniques for optimising the location of data
points to maximise Nd (Russo, 1984; Warwick and
Myers, 1987). However, as spatial data are correlated,

the number of data pairs separated by a given distance d
can be an unreliable measure of the precision of #gðdÞ: To
account for this spatial correlation, Morris (1991)

proposed the maximum equivalent uncorrelated pairs
as measure of the estimation accuracy, and Zheng and

Silliman (2000) derived a theoretical measure of the
variance of the sample variogram #g; both under the
assumption of multivariate normality.

It is well known that the sample variogram in Eq. (3)
may not be representative (accurate) if the data locations
xa are preferentially located in high- or low-valued
areas. In practice, the destructuring of the sample

variogram due to preferentially clustered data is: (1)
simplistically accounted for by the a priori selection of
one sample from each cluster with an inherent loss of

information (Chiles and Delfiner, 1999) or (2) a more
robust covariance measure is preferred (Isaaks and
Srivastava, 1988).

Fig. 1A shows the GSLIB clustered dataset (Deutsch
and Journel, 1997) overlain with a 5� 5 unit grid with
cell indices shown in Fig. 1B. Note that significant

Fig. 1. (A) Clustered dataset with 5� 5 unit grid; and (B) the grid indices.
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clustering is present in high-grade areas, for example, the
clusters present in cells 11 and 78. The clustering of data

significantly destructures the experimental variograms
calculated from this dataset, shown later. To understand
how this distortion is introduced into experimental

variograms, it is necessary to consider the location of
data pairs used for experimental variogram calculations.
The data pair vectors obtained from the GSLIB

dataset for various lags during experimental variogram

calculations are shown in Fig. 2. Note that in all three
plots, the vector densities vary throughout the study
area, as expected from clustered data. For example, in

the first lag there are significantly more data pair vectors
in the top right and bottom left higher valued parts of
the study area, shown in the top diagram of Fig. 2.

However, from these diagrams it is difficult to quantify
the influence of various data locations and their values
on the experimental variogram based on the degree of

local clustering.
Fig. 3 shows the number of times a data location was

paired during experimental variogram calculations for
the three lags shown in Fig. 2. In this diagram, note that

the data pairing magnitudes are not related to the degree
of local clustering but on the data clustering at distance
d: For example, in the cluster centred on x ¼ 32:5 and

y ¼ 36:5 for the 10th lag, three data locations have been
paired once, one data location is paired twice, and the
remaining data location is not paired. Moreover, the

data location shown at the origin of the lag vector
(x ¼ 38:5 and y ¼ 5:5) in the three diagrams is paired 0,
2, and 5 times for lags one, five, and ten, respectively.
Thus, weighting the squared difference of the data pair

values in experimental variogram calculations by the
product of the univariate data location declustering
weights for each distance d (Rivoirard, 2000) is not

appropriate.
To account for the influence of preferentially clustered

data on experimental variograms, and, consequently on

the estimated variogram, it is first proposed to extend
the univariate cell declustering method (Journel, 1983)
to the two-point case, and secondly to explicitly use data

location clusters to determine two-point declustering
weights. The two-point declustering results from both
methods are then used to weight the squared difference
of the data pair values during the calculation of

experimental variograms, removing the distortion asso-
ciated with data clustering. Effects on the estimated
variogram when using the proposed methods are

investigated.

2. Two-point declustering

Methods for obtaining declustered first-order mo-

ments, such as the mean and variance of ZðxÞ; have been
discussed by several authors. Traditional declustering

Fig. 2. Data pairs for various lags. (vector azimuth=0001;

vector tolerance=201; lag=3 units; bandwidth=5 units).

A. Richmond / Computers & Geosciences 28 (2002) 231–241 233



techniques such as polygons of influence David (1977)
and cell declustering (Journel, 1983) account for spatial

clustering under the implicit assumption of spatial
independence. Declustering using a global kriging
approach (Isaaks and Srivastava, 1989) or redundancy

co-efficients obtained from spatial correlation matrices
(Bourgault, 1997) explicitly account for spatial correla-
tions with an average covariance function. However, it is
well known that the importance of the clustering effect

on the estimate of the cumulative distribution function
increases when the dependency between spatial locations
increases (Cressie, 1993). Bogaert (1999) proposed a

least-squares approach to weight data values to account
explicitly for the presence of spatial dependence that
varied with the magnitude of data values.

Techniques for declustering two-point statistics, such
as the experimental variogram, have rarely been devel-
oped in the literature. Rivoirard (2000) suggested

weighting data pairs in experimental variogram calcula-
tions using various weighting schemes, including the
product of the univariate sample declustering weights.
This section presents two methods for two-point

declustering.

2.1. Two-point cell declustering

Weighted cell declustering for univariate statistics
involves overlaying a regular grid on the area consid-
ered, and for each occupied cell, assign a weight that is
inversely proportional to the number of data locations

present within that cell, to each data location within that
cell (Journel, 1983; Deutsch, 1989). For the two-point
case, the procedure for determining the declustering

weights is

1. overlay area A with a grid of C regular cells, ci;
i ¼ 1;y;C;

2. for each pair of data locations fxaAci; xa0Aci0 g
separated by distance d count the number of vectors
vii0 that originate in cell ci; and terminate in cell ci0 ;
and

3. for distance d ; the weight for a pair of data locations
fxaAci; xa0Aci0 g is 1=vii0 ¼ waa0 :

The GSLIB clustered dataset was used to calculate
two-point declustering weights using the proposed
methodology and the 5� 5 unit grid shown in Fig. 1.
The cell size was chosen as it minimised the declustered

mean of the data (Deutsch and Journel, 1997). The plots
in Fig. 4 show the number of times vii0 ; the data locations
fall in the various cell pairs. In these diagrams, positive

values of vii0 are mostly 1, but occasionally exceed 10.
For example, in the 10th lag, vii0=14 for the cell pair
ð11; 71Þ: Therefore, in this example, data pairs originat-

ing and terminating in essentially the same area, due to
data clustering, can influence two-point statistics by

Fig. 3. Number of times data locations are paired for various

lags. (vector azimuth=0001; vector tolerance=201; lag=3

units; bandwidth=5 units).
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more than 10 times than those data pairs located in

sparsely sampled areas. When using two-point cell
declustering, the idea is to weight the data pairs inversely
proportional to the number of times the data locations

belong to the same cells.
The two-point cell declustering weights are sensitive to

the distance d as vii0 varies with d ; shown in Fig. 4, and

the cell grid configuration. By varying the grid origin
and cell sizes, individual clusters of data locations either
will fall entirely within a single cell (ideal), or will be split
over multiple cells (not ideal).

Note that, in general, the two-point cell declustering
weights are not the product of the univariate cell
declustering weights for the corresponding set of cells.

This is shown in Fig. 5, a scatter plot of the two-point
cell declustering weights versus the product of the
corresponding univariate cell declustering weights.

However, for any lag in which all the data locations in
a cell ci were paired with all data locations in a cell ci0 ;
then the two-point cell declustering weights will equal

the product of the univariate cell declustering weights
for ci and ci0 :
For a separation vector h ¼ 0; a data location can

only be paired with itself, i.e. xa ¼ xa0 and ci ¼ ci0 :
Consequently, the weights applied to these data pairs are
simply inversely proportional to the number of data
locations present within that cell. Thus, univariate cell

declustering (Journel, 1983) is simply a special case of
the proposed two-point cell declustering method.

2.2. Two-point declustering with data location clusters

An alternative method of two-point declustering that

is not sensitive to the cell configuration explicitly
considers data location clusters. The idea is

Fig. 4. Number of vectors vii0 that belong to various cell pairs

for same lags shown in Fig. 2.

Fig. 5. Scatter plots of two-point cell declustering weights

1=vii0versus product of univariate cell declustering weights for

5th lag. (Note: there is significant overplotting of values).
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1. identify the number of data location clusters G within

A; gi; i ¼ 1;y;G;
2. for each pair of data locations fxaAgi; xa0Agi0 g

separated by distance d count the number of vectors
vii0 that originate in cluster gi; and terminate in cluster

gi0 ; and

3. for distance d, the weight for a pair of data locations

fxaAgi; xa0Agi0 g is 1=vii0 ¼ waa0 :

There is considerable literature on methods of

determining clusters for spatially correlated data (e.g.
Allard and Guillot, 2000). In this study, if two data

Fig. 6. Clusters for various distances t: (Note: only clusters with two or more data locations are shaded, and shading intensity is unique

to cluster).
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locations are less than a specified distance t apart they
are considered to belong to the same cluster, i.e. if

xa � xa0j jpt then xa; xa0Agi: Fig. 6 shows data location
clusters identified for various t values. Note that the
gross dimension of the cluster is not equal to t; but by
the number and relative positions of the data locations
that jointly satisfy the constraint xa � xa0j jpt: In Fig. 6,
as t increases the number of clusters decreases. This is
due to originally ungrouped data being considered

clustered, or several shorter-scale clusters merging. The
former (dashed ellipse) and latter (dashed square)
scenarios are identified in the top and bottom pairs of

diagrams in Fig. 6, respectively. Using this clustering
algorithm, a practical distance t should minimise the
merging of shorter-scale clusters.

The GSLIB clustered dataset was used to calculate
two-point declustering weights using the proposed
methodology and t ¼ 1:5 units. The diagrams in Fig. 7

show the number of times vii0 the data locations fall in
the various cluster pairs. In Fig. 7, for the first lag, there
are several data pairs sourced entirely from a single
cluster, shown as values greater than or equal to one on

the 451 diagonal in the top diagram. As with the
corresponding two-point cell declustering plots (Fig. 4),
the magnitude of vii0 varies considerably from 1 to >10.

When employing this two-point declustering technique,
the idea is to weight the data pairs inversely propor-
tional to the number of times the data locations belong

to the same clusters.

3. Weighting data pairs in experimental variogram

calculations

The two-point declustering weights from the previous
section can be used to weight the sample variogram in
Eq. (3), i.e.

#g dð Þ ¼
1

2Wd

XNd

a¼1

z xað Þ � z xa0ð Þ½ �2waa0 ; ð4Þ

whereWd ¼
PNd

a¼1 waa0 ; the sum of two-point weights for
distance d; and xa � xa0j jAd :
Computer programs bicell and biclus were used to

calculate experimental variograms for the GSLIB
dataset using the proposed methodology. For these
calculations, the data values were initially transformed
to their natural logarithms prior to using Eqs. (3) and

(4). Log experimental variogram values were calculated
for comparison purposes using the reference dataset
from which the GSLIB clustered dataset were drawn

(Deutsch and Journel, 1997).
Fig. 8 shows the unweighted and weighted log

experimental variogram values in the north–south and

east–west directions. In Fig. 8, the unweighted log
experimental variogram values for the north–south

Fig. 7. Number of vectors vii0 that belong to cluster pairs for

various lag vectors. (Note: the cluster index is assigned

randomly; vector azimuth=0001; vector tolerance=201;

lag=3 units; bandwidth=5 units; cluster distance=1.5 units).
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Fig. 8. Log experimental variograms and the modelled variogram. (Vector tolerance=201; lag=3 units; bandwidth=5 units; cell

size=5� 5 units; cluster distance=1.5 units.)
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direction fluctuate markedly about the reference log
experimental variogram values, and the spatial structure
is unclear. Isaaks and Srivastava (1988) suggest centring,

as for covariances, and standardising, as for correlo-
grams, to stabilise and provide interpretable spatial
structures. However, uncertainty of the quantities used

for centering and normalisation may also introduce a
bias into these measures (Rivoirard, 2000). Experimental
log-variogram values employing both of the weighting
methods do not differ significantly from the reference log

experimental variogram values, and clearly provide
more interpretable structures. Similar relationships can
be noted for the east–west log experimental variograms

in Fig. 8.
All experimental log variograms were then modelled,

shown as solid lines in Fig. 8. The estimated variogram

model parameters are included in Table 1. This table
indicates that the variogram estimated from the
unweighted experimental variogram has a lower nugget
effect, higher spatial variance, and longer range than the

variogram estimated from the reference experimental

variogram. For both proposed data pair weighting
techniques the estimated variogram model parameters
closely match the parameters of the variogram model

estimated from the reference data.

4. Computer programs

FORTRAN programs bicell and biclus implement
both two-point declustering algorithms to weight data
pairs in experimental variogram calculations. The

programs are modelled after and use the GSLIB
algorithm to pair data for the various lag distances d
(Deutsch and Journel, 1997).

The input parameters for two-point cell declustering
(bicell) are shown in Fig. 9 and documented as follows:

* datafl: input data file.
* ixl, iyl, izl: columns for the x, y, z co-ordinates.
* ivr: variable column.

Table 1

Estimated log variogram model paramters (sph.=spherical)

North–south East–west

Method Model type C0 C1 a1 Model type C0 C1 a1

Reference Sph. 0.1 1.9 10.0 Sph. 0.1 1.9 9.5

Unweighted Sph. 0.0 2.3 12.5 Sph. 0.0 2.3 11.0

Weighted (cell) Sph. 0.1 1.9 10.5 Sph. 0.1 1.9 9.0

Weighted (cluster) Sph. 0.1 1.9 11.0 Sph. 0.1 1.9 9.5

Fig. 9. Example parameter file for bicell program.
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* vtyp: variogram type (1=variogram; 2=log vario-
gram).

* lag: unit lag separation distance.
* ltol: lag tolerance.
* nlags: number of lags.
* azi, atol, aband: azimuth, half window azimuth

tolerance, and azimuth bandwidth.
* dip, dtol, dband: dip, half window dip tolerance, and

dip bandwidth.
* xo, yo, zo: x, y, z cell grid origin.
* xsiz, ysiz, zsiz: x, y, z cell sizes.
* xn, yn, zn: x, y, z number of cells.
* outfl: output file.
* idbg: debug level.
* dbgfl: debug file.

The input parameters for two-point declustering using

clusters (biclus) are shown in Fig. 10 and documented as
follows:

* datafl: input data file.
* ixl, iyl, izl: columns for the x, y, z co-ordinates.
* ivr: variable column.
* vtyp: variogram type (1=variogram; 2=log vario-

gram).
* lag: unit lag separation distance.
* ltol: lag tolerance.
* nlags: number of lags.
* azi, atol, aband: azimuth, half window azimuth

tolerance, and azimuth bandwidth.
* dip, dtol, dband: dip, half window dip tolerance, and

dip bandwidth.
* htol: cluster distance t.
* outfl: output file.
* idbg: debug level.
* dbgfl: debug file.

The output files from bicell and biclus contain nlags
lines for both the unweighted and weighted variograms,
including the lag number, the average distance between

data pairs for the lag; the variogram value; the lag mean;
the lag variance; and the number of data pairs.
Information output to the debug files can be used to

generate some of the diagrams shown in this paper.
The computer programs are memory intensive since

an array of size nlags�C�C or nlags�G�G is

required. For large study areas, it may be necessary to
utilise an alternative algorithm that reduces the compu-
ter programming requirements to two-dimensional
arrays. This could be achieved by considering the vector

centres of data pairs as the clustered attribute and using
a univariate declustering method to determine the data
pair weights.

5. Conclusions

This study provides evidence of the destructuring
effect of preferentially clustered data on the experi-

mental variogram when the data are strongly positively
skewed, the number of samples is small, and the
clustering is significant. However, unlike univariate

statistics in which bias results from local clustering, the
influence of data values on the variogram is related to
clustering at distance d from its location. Consequently,
two-point declustering weights vary with d:
Two-point declustering to weight data pairs in

experimental variogram calculations was proposed and
involved using either a cell declustering method or by

considering explicitly the data location clusters. The
former is sensitive to the grid configuration, and the
latter to the manner in which data locations are grouped

into clusters. The two-point weights for the cell
declustering method are not the products of the

Fig. 10. Example parameter file for biclus program.

A. Richmond / Computers & Geosciences 28 (2002) 231–241240



univariate cell declustering weights. However, univariate
cell declustering weights can be obtained by considering

a null vector in the two-point approach. Other methods
of determining clusters should be considered when
employing the second declustering method (e.g. Allard

and Guillot, 2000).
In the example, destructuring of unweighted log

experimental variograms due to clustering was signifi-
cant and resulted in poor estimation of the log

variogram model. Log experimental variograms showed
significant structural improvement when the proposed
two-point declustering weights were considered. In

addition, the estimated log variogram model using this
approach closely matched the log variogram model
estimated from the reference data.

When the number of data is large and pre-
ferential clustering is present, the proposed approach
to weighting data pairs in experimental variogram

calculations will provide more accurate experimental
variogram values. However, it is not clear whether these
more accurate experimental variograms will result in
significant improvements to the estimated variogram

model.
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