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Abstract 

Indicator kriging (IK) provides a non-parametric distribution estimated directly at fixed thresholds by 

considering indicator transforms of conditioning data in the form of cumulative distribution functions 

with 0/1 step functions.  To adequately estimate all distributions, IK is commonly implemented with 

numerous thresholds using large numbers of conditioning data, resulting in significant order relation 

violations.  An alternative implementation of IK is proposed, involving the direct coding of the 

conditioning data in the form of probability distribution functions with 0/1 step functions, and the 

dynamic relocation of thresholds to the conditioning data values.  Improved local accuracy and 

precision, and recoverable reserve estimates were obtained from the proposed implementation of IK 

when compared to the traditional IK method in an artificial case study.  Computer programs dtik3d 

and dtpik are provided to implement the proposed dynamic threshold IK technique. 
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1.0.  Introduction 

The advantage of IK over distribution based estimators such as ordinary kriging is that IK provides a 

non-parametric distribution, estimated directly at various thresholds.  However, the selection of these 

fixed thresholds based on the global distribution involves conflicting goals (Deutsch, Journel, 1997).  

One of the most important considerations is the selection of sufficient thresholds to describe 

adequately the conditional cumulative distribution function (ccdf) for all locations. 

 For strongly positively skewed populations, such as precious metal deposits, resolution of the 

ccdf is lost if too few thresholds are used.  Fig. 1 shows the ccdf’s for 10 locations estimated by IK 
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using both 5 and 12 thresholds.  In this diagram, when 5 thresholds are used for IK the important 

upper parts of the distribution are poorly resolved (compare the right-hand diagrams in Fig. 1).  For 

the IK implementation with 5 thresholds, there was an average 2.3 order relation problems per location 

with an average magnitude of 0.042. 

 The use of large numbers of thresholds, especially in the important parts of the distribution, to 

resolve adequately all ccdf’s is a common IK practice.  However, if numerous thresholds are used, 

with each threshold being independently estimated by IK, the resulting distribution commonly violates 

the axioms of a cdf, often leading to significant order relation corrections.  When using 12 thresholds 

in the previous example, there was an average of 7.4 order relation problems per location with an 

average magnitude of 0.033.  These order relation violations result from the non-convexity of the 

kriging algorithm, lack of conditioning data in some specific classes (Deutsch, Journel, 1997), and the 

independent modelling of indicator variograms at the various threshold values (Journel, Posa, 1990).  

In most practical implementations, large numbers of indicator thresholds are also accompanied by a 

significant increase in the number of conditioning data and, consequently, CPU time.  Clearly, an ideal 

implementation of IK is one that rapidly provides sufficient ccdf resolution with no order relation 

violations. 

 This paper explores an alternative IK implementation involving the dynamic relocation of 

thresholds to the conditioning data grade values, and proposes a new approach to constructing the 

ccdf.  This implementation of IK involves the direct coding of the experimental data in the form of 

probability distribution functions (pdf) with 0/1 step functions, then using the conditional expectation 

of these indicator random variables at unsampled locations to generate the ccdf.  The practical 

application of the proposed methodology is demonstrated and contrasted to the traditional 

implementation of IK in an artificial recoverable reserves case study. 
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2.0  Indicator kriging 

This section briefly reviews the theoretical considerations for IK.  A thorough presentation of the 

theory and practice of indicator geostatistics is available in textbooks such as Deutsch, Journel (1997) 

and Goovaerts (1997). 

 

2.1  Traditional IK 

The basic approach of probabilistic geostatistics, such as IK, is to turn any unsampled value  xz  into 

a random variable  xZ .  The probability distribution function (pdf) of  xZ  characterises the 

uncertainty about the unknown true value  xz .  The cdf of  xZ  is denoted: 

     zxZzxF  Pr;        (1) 

where     zzzxFzxF      ;; . 

 In practice, a set of n conditioning data   nxz ,...,1,   is used: 

        nzxZnzxF  Pr;        (2) 

 Traditional indicator geostatistics relies on the direct coding of experimental data in the form 

of cdf’s with 0/1 step functions, i.e. indicator variables defined: 

    
  

otherwise   0

; if    1
  =  ;







   z xz

zxi


       (3) 

 In indicator kriging, the ccdf is discretised into K+1 classes using K thresholds  Kkzk ,...,1 ,   

and the probability bounds, then estimated independently at each threshold value by its conditional 

expectation (Journel, 1983): 
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where    nzxIE k;  is the conditional expectation of the random variable  kzxI ; .  Note that there is 

no constraint for      nzxFnzxF kk ;; 1  . 

 

2.2  Alternate implementation of IK 

An alternative IK implementation, involving the dynamic relocation of the threshold values kz  to the 

z-values of the n conditioning data at each unknown location x was suggested, but not described, by 

Deutsch, Lewis (1992).  Chu (1994) proposed modifications to the traditional implementation of IK to 

rapidly account for large numbers of threshold values that effectively equates to this alternative IK 

approach.  However, CPU effective implementation relied on partial ccdf determination and, 

consequently, non-correction of order relation violations.  This section describes the approach 

suggested by Deutsch, Lewis (1992). 

 To enable construction of the ccdf (see Appendix A), IK with dynamic threshold selection 

(DTIK) requires experimental data to be coded in the form of pdf’s with 0/1 step functions, i.e. 

indicator variables defined: 

    
  

otherwise   0

; if    1
  =  ;


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
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zxj


       (5) 

 Then, the conditional probability distribution function (cpdf) for each z-value corresponding to 

the conditioning data is estimated by its conditional expectation: 

 

             
    

   nnzx p
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,...,1                ;                        

Pr       
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* 











  (6) 

where    nzxJE ;  is the conditional expectation of the random variable  zxJ ; . 

 Note that, if the same variogram is used to estimate all n probabilities, then they sum to one 

and are equivalent to the kriging weights   x  returned by ordinary kriging (Rao, Journel, 1997), i.e. 

      xnzxp ;* .  However, the non-convex property of kriging does not ensure the absence of 
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non-physical probabilities.  A new method of adjusting negative weights to satisfy the axioms of a pdf 

that preserves the relative magnitude between sample kriging weights is proposed in Appendix B. 

 A problem with DTIK is that it calls for the definition of a variogram at an infinite number of 

threshold values, corresponding to each sample grade z .  In addition, at each threshold when using 

the indicator transform in Eq. (5) only one datum is coded 1 and N-1 are coded 0, where N is the total 

number of samples.  Experimental variograms calculated from these indicator datasets display pure 

nugget effects.  Solutions to this problem include defining a finite set of variograms   Kkzk ,...1,   

using data coded as the traditional indicator transform in Eq. (3), then using either a variogram 

interpolation approach (Chu, 1994), or a variogram class approach where 

    kkk zzzzz     1  .  The respective solutions call for the solving of n and K kriging 

systems. 

 Fig. 2 shows the ccdf’s using DTIK for the same 10 locations shown in Fig. 1.  In this diagram, 

the important upper parts of the distribution are relatively well resolved when only 12 samples are 

used for kriging (compare the right-hand diagrams in Figs 1 and 2). The use of additional samples for 

DTIK provides little additional benefit in resolving the ccdf.  This is evident by comparing the top and 

bottom diagrams in Fig. 2, for which 12 and 24 conditioning data were used for DTIK respectively. 

 

 

3.0  Case study 

An artificial case study using the GSLIB dataset is developed to evaluate the proposed methodology 

against traditional indicator geostatistics.  Fig. 3 shows the spatial distribution of 50 x 50 

measurements, and hereafter considered as the reference dataset.  In this example, the measurements 

are considered to be from a precious metal deposit, thus the high values are more economically 

important. 

 One hundred and fifty locations were drawn randomly on twenty occasions to form 20 sample 

datasets, the first of which is shown in Fig. 3.  The reference and sampled statistics differed somewhat, 
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shown in Fig. 4.  However, on average, the sample datasets represent the true distribution, shown in 

Fig. 5, where the sample datasets fluctuate closely about the 45 degree line of Q-Q plots. 

 Indicator variogram model parameters for the deciles of a declustered sample population of 

140 samples are listed in Table 1.  All models consist of a nugget effect and either one or two 

spherical structures.  A further 3 thresholds were defined at the 95th, 97.5th, and 99th percentiles and 

assigned the indicator variogram model of the 9th decile.  The additional thresholds were designed to 

accurately model the important higher grade parts of the conditional distributions. 

 The GSLIB program ik3d was used to generate ccdf’s from all 20 datasets for 5 x 5 blocks 

using: 1) 5 thresholds (1st, 3rd, 5th, 7th, and 9th  deciles) and 12 samples, hereafter referred to as IK-1; 

and 2) all 12 thresholds and 24 samples (IK-2).  A modified version of ik3d (dtik3d) generated an 

additional two sets of ccdf’s from all 20 datasets for 5 x 5 blocks with the DTIK method using 12 

samples (DTIK-1), and 24 samples (DTIK-2).  Both DTIK-1 and DTIK-2 applied the 5 variograms 

used in IK-1 as class variograms, thus, only 5 kriging systems were solved per location.  Negative 

weights were adjusted to satisfy the axioms of a pdf using the methodology shown in Appendix B.  In 

all four IK implementations, the same search neighbourhood and search strategy was employed. 

 Some statistical characteristics of the models generated from the various IK implementations 

are shown in Table 2.  In this table, the mean block grade for all IK implementations are close to the 

true block mean of 2.58 units, however, the variance of the block grades differ significantly.  For 

example, IK-1, IK-2, DTIK-1, and DTIK-2 returned block variances of 4.00, 4.12, 5.87, and 3.87 

units2 respectively, significantly below the true block variance of 9.24 units2.  Thus, if only the block 

mean grades are considered, significant smoothing is present in all of the models. 

 Local accuracy, precision, and goodness measures (Deutsch, 1997) were determined for all IK 

models.  These three measures are shown in Figure 6, local accuracy plots for the first IK model from 

each estimation method.  In Figure 6, the plot for DTIK-1 is closest to the ideal 45o line suggesting 

that this implementation of IK produces the best probabilistic model.  The other three models deviate 

somewhat from this 45o line, reflected by their inferior local accuracy statistics.  Similar characteristics 

were noted for the IK models constructed from the remaining 19 sample datasets. 
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 Table 2 includes the average co-efficient of variation for the conditional distributions of the 

four implementations.  The greater the co-efficient of variation the greater the spread of the 

conditional distribution relative to its mean.  The average co-efficient of variation of the conditional 

distributions is slightly higher than the true value for DTIK-1 and significantly greater than the true 

value for IK-1, IK-2, and DTIK-2.  These higher values are an indication of smoothing of the 

conditional distributions, thus, these models may not be appropriate for estimating proportions above a 

cut-off. 

 Recoverable reserves for a 2.5 unit cut-off were obtained from the IK-1 and IK-2 models using 

the GSLIB program postik and suitable interpolation and upper tail extrapolations.  As the dynamic 

threshold IK method produces varying numbers of ccdf points at each location a modified version of 

postik (dtpik) was used to determine recoverable reserves for DTIK-1 and DTIK-2 models.  The 

variance reduction factor used was 1, thus, the results represent the recoverable reserves for the 

reference 1 x 1 support. 

 Histograms of the recoverable tonnage error for the various IK implementations are shown in 

Fig. 7.  In this diagram a positive value represents overestimation of recoverable tonnes relative to the 

reference dataset and vice versa.  Both of the traditional implementations of IK, on average, 

overestimate the recoverable tonnage by more than 5% at this cut-off, shown in Figs 7A and 7B.  The 

use of additional thresholds, to better define the ccdf slightly improves the average recoverable 

tonnage error from 5.9 to 5.3%.  DTIK appears to be unbiased with average recoverable tonnage errors 

<1%, shown in Figs 7C and 7D. 

 It is possible that four factors are biasing the recoverable reserve results returned by IK-1 and 

IK-2: 

1. Screening of data is more pronounced for lower nugget effects, thus, low grade classes (<8th 

decile) are significantly influenced by negative kriging weights. 

2. Linear interpolation between fixed thresholds on the ccdf provides a within-class uniform 

distribution, which may not be appropriate for high grade classes in strongly positively skewed 

deposits.  Solutions include linear interpolation between tabulated values within each class 
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(Deutsch, Journel, 1997), and using a threshold equivalent to the cut-off grade.  In practice, the 

tabulated values are the global distribution, which might not be locally representative. 

3. The correction of significant order relation violations, resulting from sudden changes in nugget 

effect and spatial variance at the 8th and 9th deciles, may not be appropriate. 

 The increased average block co-efficient of variation values from IK-1 to IK-2 and from 

DTIK-1 to DTIK-2, shown in Table 2, are related to ccdf’s in low grade areas being informed by 

additional high grade samples, often at some distance.  This smoothing effect, enhanced by the 90% 

nugget effect above the 9th decile, is evidenced by the greater spread of recoverable tonnage results for 

IK-2 and DTIK-2 than for IK-1 and DTIK-1, shown in Fig. 7.  The smoothing impact is more 

pronounced for DTIK as the local ccdf’s that result from DTIK tend toward the global cdf as more and 

more samples are used as conditioning data. 

 Histograms of the recoverable metal error for the various IK implementations are shown in 

Fig. 8.  In this diagram a positive value represents overestimation of recoverable metal relative to the 

reference dataset and vice versa.  In Fig. 8A, the traditional implementation of IK with 5 cut-offs, on 

average, underestimates the recoverable metal by 3.5%.  These results are sensitive to the hyperbolic 

upper tail extrapolation parameter .  The use of additional thresholds in IK-2, on average, 

underestimates the recoverable metal by 4.7%.  Overestimation of tonnes was a characteristic of both 

traditional IK implementations, thus, significant underestimation of grade is present.  When dynamic 

thresholds are used (DTIK-1 and DTIK-2) the recoverable metal, on average, is close to the true value, 

shown in Figs 8C and 8D. 

 

 

4.0  Conclusions 

The traditional implementation of IK provides a non-parametric distribution estimated directly at fixed 

user-defined thresholds.  IK models in an artificial case study using this approach were sensitive to the 

selection of these fixed thresholds and the extrapolation from discrete conditional probabilities to the 
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probability bounds.  Irrespective of the number of thresholds, the conditional distributions were 

biased, resulting in poor recoverable reserve estimates. 

 An alternate implementation of IK, where the thresholds are dynamically relocated to the 

conditioning data values, was proposed.  In the case study, DTIK using few conditioning data resulted 

in the best probabilistic model and unbiased recoverable reserve estimates.  As additional conditioning 

information is used for DTIK, the local conditional distributions are significantly smoothed as they 

tend towards the global cdf.  Thus, locally accurate DTIK models relied on using small numbers of 

conditioning data, an appropriate method of ccdf construction, and the absence of negative kriging 

weights. 
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Appendix A – Constructing cdf’s from conditional probabilities 

Consider the conditional probabilities returned by kriging indicator transforms of the eight data listed 

in Table A1 and graphed in Fig. A1.  The mean and variance of the distribution are 1.36 ppm and 1.23 

ppm2 respectively.  These conditioning data belong to a global population with minimum and 

maximum grade values of 0.0 and 8.0 ppm respectively.  If these conditional probabilities are used to 

build a ccdf, then it appears as an inappropriate step function bounded by the minimum and maximum 

z-values of the conditioning data, shown in Fig. A2. 

 

Table A1.  Conditional probabilities for 8 conditioning data. 

Sample Grade 
Conditional 

Probability 
z-range of influence 

lower upper 

1 0.1 0.10 0.00 0.16 

2 0.2 0.05 0.12 0.31 

3 0.3 0.15 0.19 0.43 

4 0.4 0.20 0.28 0.60 

5 1.8 0.10 1.40 2.40 

6 2.0 0.05 1.55 2.65 

7 2.3 0.10 1.70 3.00 

8 2.8 0.25 2.15 3.55 
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Figure A1.  Probability distribution of conditioning data listed in Table A1. 
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Figure A2.  Cumulative distribution of conditioning data listed in Table A1. 

 

 One possible solution is to construct a ccdf using: 

1. the discrete mid-points of the vertical steps, calculated as:  

              ;;5.0;; *

1

*

1 nzxpnzxpnzxFnzxF    , and (A1) 

2. discrete points on the horizontal steps inversely proportional to the conditional probabilities of 

adjacent samples: 

           ;5.0;; * nzxpnzxFnzxF       (A2) 

where                nzxpnzxpnzxpznzxpzz 1

**

1

*

1

* ;;/;;    . 

 Note that, as each class of   nzxF ;  is informed, order relation violations are not possible if 

the kriging system returns only positive weights. 

 The ccdf constructed using discrete points determined from Eqs A1 and A2, and the previous 

example bounded by the population limits of 0.0 and 8.0 ppm, is shown in Fig. A3. In this approach to 

ccdf construction, extrapolation of the tails of the distribution and interpolation between discrete 

points on the ccdf may not be appropriate. This is shown in Fig. A3, where a large probability (0.25) 

for the highest-grade sample results in the upper tail strongly influencing the univariate statistics of the 
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ccdf, such as the mean and variance. In this example the distribution mean and variance are 1.68 ppm 

and 2.85 ppm2 respectively. An appropriate tail extrapolation method can be used to minimise the 

impact of the last class on these statistics (Deutsch, Journel, 1997). However, the interpolation 

between the 4th and 5th sample values (0.4 - 1.8 ppm) does not account for the possibility of null-

probability intervals in this part of the grade range. In the traditional IK approach this problem is 

solved implicitly by selecting fixed thresholds, usually based on the global cdf. 
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Figure A3.  Cumulative distribution constructed with mid-points (Note that interpolation between 

discrete points on the ccdf and to the probability bounds are all linear). 

 

 As each datum contributes to the better known global cdf it may be appropriate to use the 

global cdf to limit the z-range of influence for each conditioning data  xz  on the local IK ccdf’s. 

The idea is: 

1. determine the quantile for the sample at location x  from the global dataset: 

       nNNxzAFxq  ,...,1,;   

  where     NxzAF ;  is the global cdf; 

2. define a, say 10%, probability interval  21, qq  such that: 
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     05.012  qxqxqq   

3. then the z-range of influence for the sample at location x  is: 

   min1

1

1 ;max zqFz  , and   max2

1

2 ;min zqFz  . 

 

 These z-ranges of influence may be adapted to explicitly account for discrete grade boundaries 

of multiple statistical populations. In practice, the z-ranges of influence are only used for extrapolation 

at the extremes of the distribution, and if there is no overlap between adjacent samples on the ccdf. 

Thus, interpolation and extrapolation of the ccdf is aided by the z-ranges of influence which provide 

additional points on the ccdf in the least informed (in terms of z-values) parts of the distribution. 

 Fig. A4 shows the ccdf for the previous example constructed with the z-ranges of influence 

shown in Table A1. In this diagram, linear extrapolation to the upper probability bound at 3.55 ppm 

does not strongly influence the univariate statistics, and more complex tail extrapolation methods are 

not required. In this example, the required null probability interval from 0.6 to 1.4 ppm is located such 

that the slope of the ccdf from 0.4-0.6 ppm equals the slope from 1.4 - 1.8 ppm. 
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Figure A4.  Cumulative distribution constructed with mid-points and z-ranges of influence (Note that 

interpolation between points on the ccdf and to the probability bounds are all linear). 
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Appendix B – Adjusting negative kriging weights 

The non-convex property of kriging does not ensure the absence of non-physical kriging weights. 

Solutions proposed include constraining the kriging system to deliver positive weights (e.g. Barnes, 

Johnson, 1984), or adjusting the kriging weights (e.g. Deutsch, 1996; Rao, Journel, 1997).  Making the 

kriging system convex is complex and has not gained widespread popularity in the geostatistical 

community.  Adjusting kriging weights a posteriori either ignores conditioning information by setting 

negative weights to zero (Deutsch, 1996), or artificially increases the nugget effect by adding a 

constant to all weights (Rao, Journel, 1997). 

 A practical and simple method that retains all the conditioning information and maintains the 

relative magnitude between kriging weights 
  is proposed as: 

1. Calculate the magnitude of the inverse of the negative kriging weights: 

 



n

1

0      1


   

2. Correct the negative kriging weights such that they are inversely proportional to their magnitude 

and they sum to a small positive weight s : 

 



















otherwise          

;0      













s

 

The value of s  is subjective, but should be such that the ratio of the largest and smallest positive 

weights (pre-correction) remains relatively constant. 

3. Standardise the weights to sum to one: 

 









    0  

1










n
 

 It should be stressed that, as for any method of adjusting kriging weights, the proposed 

approach has no theoretical basis, and the adjusted weights vary with s .  However, this method 

ensures that only positive kriging weights are returned for all conditioning data. 
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 Table B1 shows kriging weights assigned to 10 samples, three of which have negative weights 

that sum to –0.21, with the largest –0.14.  The ratio between the largest and seventh largest weights is 

7.40.  The proposed method corrects the weights such that the largest negative weight has the smallest 

corrected weight.  The ratios between weights are identical to the corresponding ratios between 

original positive kriging weights.  Table B1 also includes the results using the corrections proposed by 

Deutsch (1996) and Rao, Journel (1997). 

 

Table B1.  Example of adjusting kriging weights for 05.0s  ( 1

  = Deutsch method; 2

  = Rao, 

Journel method) 

    
1   

   
1    1

  1

1

1

   2

  2

1

2

   

1 0.370 1.762 0.294 1.762 0.306 1.762 0.213 1.457 

2 0.210 1.105 0.167 1.105 0.174 1.105 0.146 1.061 

3 0.190 1.188 0.151 1.188 0.157 1.188 0.138 1.100 

4 0.160 1.067 0.127 1.067 0.132 1.067 0.125 1.034 

5 0.150 1.875 0.119 1.875 0.124 1.875 0.121 1.318 

6 0.080 1.600 0.063 1.600 0.066 1.600 0.092 1.158 

7 0.050 - 0.040 1.543 0.041 - 0.079 1.583 

8 -0.020 - 0.026 2.500 0.000 - 0.050 1.333 

9 -0.050 - 0.010 2.800 0.000 - 0.038 - 

10 -0.140 - 0.004 - 0.000 - 0.000 - 

 
71

 = 7.40 
71

  = 7.35 1

7

1

1
 = 7.46 2

7

2

1
 = 2.70 
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Figure 1.  Conditional cumulative distributions for 10 locations estimated by IK: (top) 5 thresholds 

corresponding to the 10th, 30th, 50th, 70th, and 90th percentiles; (bottom) 12 thresholds corresponding to 

the deciles and 95th, 97.5th, and 99th percentiles. 
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Figure 2.  Conditional cumulative distributions estimated by the proposed IK method for the same 10 

locations shown in Fig. 1: (top) 12 samples; (bottom) 24 samples. 
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Figure 3.  Reference and first sample dataset. 

 

 

  

 

Figure 4.  Reference and first sample dataset statistics. 
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Figure 5.  Q-Q plots of reference and 20 sample datasets. 
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Figure 6.  Accuracy plots for the IK models using the first sample dataset: (A) IK-1; (B) IK-2; (C) 

DTIK-1, and (D) DTIK-2. 
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Figure 7.  Histograms of recoverable tonnage error (%) at a 1 x 1 support and 2.5 units cut-off: (A) IK-

1 with a hyperbolic model upper tail extrapolation (=1.5); (B) IK-2 with a linear upper tail 

extrapolation; (C) DTIK-1 with a linear upper tail extrapolation, and (D) DTIK-2 with a linear upper 

tail extrapolation (Note that the error is relative to the true recoverable tonnage). 
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Figure 8.  Histograms of recoverable metal error (%) at a 1 x 1 support and 2.5 units cut-off: (A) IK-1 

with a hyperbolic model upper tail extrapolation (=1.5); (B) IK-2 with a linear upper tail 

extrapolation; (C) DTIK-1 with a linear upper tail extrapolation, and (D) DTIK-2 with a linear upper 

tail extrapolation (Note that the error is relative to the true recoverable metal). 
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Table 1.  Indicator variogram parameters (after Deutsch, Journel, 1997). 

 

k
z   kzAF ;   kzC0   kzC1   kza1   kzC2   kza2  

0.159 0.1 0.0 0.5 11.0 0.5 30.0 

0.278 0.2 0.0 1.0 11.0 0.0 - 

0.515 0.3 0.0 1.0 11.0 0.0 - 

0.918 0.4 0.0 1.0 11.0 0.0 - 

1.211 0.5 0.0 1.0 11.0 0.0 - 

1.708 0.6 0.0 1.0 11.0 0.0 - 

2.325 0.7 0.0 1.0 11.0 0.0 - 

3.329 0.8 0.4 0.6 11.0 0.0 - 

5.384 0.9 0.9 0.9 11.0 0.0 - 

 

 

 

Table 2.  Statistics of various IK implementations (Note: statistics are the average of the 20 models). 

 

Statistic True IK-1 IK-2 DTIK-1 DTIK-2 

Average block grade 2.58 2.49 2.47 2.62 2.58 

Variance of block mean grades 9.24 4.00 4.12 5.87 3.64 

Average co-efficient of variation of 

block ccdf’s 
0.94 1.49 1.56 1.19 1.48 

 

 


