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ABSTRACT

There are well established multivariate conditiosaulation techniques for correlated

variables, but most of these methods require angtassumption of multivariate Gaussian

distribution, can only be applied to a limited nwenlof variables, and cannot deal adequately
with complex relationships between multiple varesbl

This paper presents a new multivariate conditisialulation method based on local self-
healing during sequential Gaussian simulation whe aid of cloud distributions. The
technique does not require complex initial datandfarms and can easily deal with
heteroscedastic and heterotopic distributions al &g inequality constraints. This new
approach to stochastic simulation is demonstrabecafpolymetallic deposit and a porphyry
copper deposit.
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INTRODUCTION

Stochastic simulation of multivariate distributiomzy be desirable for many types of mineral
deposits, for example, porphyry copper, iron ored anickel laterite mineralisation.
Multivariate spatial data from such deposits malyileix strong correlations between variables,
heterotopic distributions, and inequality constimifigure 1). Any analysis or modelling must
therefore allow for the dependencies that are fanrbe observed data.

There are a number of well-established conditisimaulation methods for multivariate data, of
which stepwise conditional transformation (SCT; &egthong and Deutsch, 2003) and
minimum/maximum autocorrelation factors (MAF; Destia and Dimitrakopoulos, 2000), are
most commonly used in the mining industry. Bothttidse techniques require an additional
transformation of spatially located Gaussian dasasbat have already been transformed
independently from the original data space. Theoisé transformation for SCT considers
bivariate relationships sequentially to generate-da&g uncorrelated service variables, whilst
MAF considers multivariate relationships to genersgrvice variables that are de-correlated at
all lags under certain conditions. However, boBT%nd MAF may not work effectively in the
presence of heterotopic distributions and inegualitnstraints. Furthermore, locations not
sampled for all variables are precluded from thmsdary transformations.

This paper presents a new multivariate conditisialulation method based on local self-
healing during sequential Gaussian simulation Withaid ofa priori cloud distributions. The

technique does not require complex initial datangfarms and can easily deal with
heteroscedastic and heterotopic distributions al age inequality constraints. This new

approach to stochastic simulation is demonstrabecafpolymetallic deposit and a porphyry
copper deposit.

METHODOLOGY

Multivariate conditional simulation method based lmtal self-healing during sequential
Gaussian simulation with the aid of cloud distribns involves:

1. Independent Gaussian transformation of each ofligiataset;
2. Calculation of the bivariate/multivariate cloudtdisutions; and
3. SGS of each variable considering the clouds frap ), where:
a. the f'variable is simulated as normal; and
b. subsequent variables have the Gaussian distribfriom which the simulated
value is drawn, adjusted (or healed) to reflect binvariate relationships

identified in Step (2) above.

Step (1) above is the standard approach for indbp#rSequential Gaussian Simulation (SGS),
SCT, or MAF.
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For the case studies in this paper the author asetinple probability function based on
discretisation of scatterplots for the calculat@frthe cloud function in Step (2) above. This
method preserves strong correlations between \asiabheterotopic distributions, and
inequality constraints. Alternative approacheshsag contouring could be considered.

Step (3) above involves self-healing the S@®r{ori) local distribution at a locatiox (that is
defined by the conditional mean and variance) bydifgimg it to account for the cloud
functions from Step (2) above. Modification camdlve straightforward Bayesian updating, or
minimisation of the cross-entropy or some direala@trgence measure. The former approach
was used by the author for the examples shownisnpiper, which involved discretisation of
the conditional distribution. As a consequence,résulting outcomes may vary with:

1. The level of discretisation used to define the dldunction and SGS-derived
conditional distribution; and

2. The ordering of the variables if only bivariatewdbfunctions are considered.

By way of example of Step 3(b) above, consider cbmulative probability plots shown in
Figure 2. The thin solid line represents a Gaussletribution for a node based on a
conditional mean of 1.31 and a conditional standbadation of 0.74 established by SGS for
the 29 variable. The thin dashed line represents theutative distribution of the bivariate
cloud function for the ¥ variable conditional to the normal score valuel &5 simulated for
the ' variable, as demonstrated from the scatterplatasfmal score in Figure 1. The self-
healed cumulative distribution is represented by thick line in Figure 2. For a random
number of 0.95, the normal score value drawn froenttaditional SGS would be 1.55, which is
slightly above the upper bounds indicated by tha daatterplot in Figure 1. After self-healing,
the simulated normal score and for the proposedoagh would be 1.46, slightly inside the
cloud of points in Figure 1. In simple terms, tireposed approach removes the probability of
simulating a value outside the defined cloud ardistébutes the initial likelihood of these
improbable outcomes to feasible outcomes thatfigiiin the cloud.

The author found that multivariate cloud functisasulted in poor quality solutions as the SGS
conditional distributions were significantly modifl, resulting in poor reproduction of input
variograms. The use of bivariate cloud functioesuited in the implicit reproduction of all
cross-correlations, even when all bivariate clawttfions were not considered explicitly.

The key to producing good solutions was to havadeguate level of discretisation of both the
cloud function and SGS-derived conditional disttibn, and to simulate the variables in
decreasing degree of correlation (heterotopicity).

EXAMPLES
Polymetallic Deposit

Figure 3 shows scatterplots of normal score transScof drill hole data for four variables (Cu,
Au, As, and Hg). Cu and Au were economic contobsit whilst As and Hg had potential
detrimental environmental consequences and coratenpenalty issues. The deposit had
limited drilling that was widely spaced relativettee spatial correlations. Note also that a small
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number of samples did not have As and Hg assalgs.sGatterplots in Figure 3 indicate that the
variables are correlated to various degrees.

Figure 4 shows scatterplots of the first SGS ratiie normal scores when each variable was
simulated independently. For these scatterplats that:

» there is a very low correlation between all 4 Valea that is not consistent with the
input drill hole data shown in Figure 3; and

» thereis an apparent artefact at a normal scote\afl4 in some plots, which is related
to a constraint included in the SGS program emmlageminimise the potential for
extreme values.

Figure 5 shows scatterplots of the first SGS ratii®s normal scores using the proposed self-
healing methodology. For this implementation Auswiiae primary variable, thus Au-Cu, Au-
As, and Au-Hg relationships were considered explicduring simulation. For these
scatterplots, note that the correlations betwekd ahriables are in good agreement with the
corresponding input drill hole data plots showrrigure 3. Note also that all data was included
in the simulation process, even when As and Hgyassare absent.

Porphyry Copper Deposit

The top plot in Figure 6 shows a scatterplot oltaopper (Cu) versus cold sulphuric acid
soluble copper (CuCx) for an oxide domain in a pgrg copper deposit. Note that, due to the
sequential nature of these assays CuCx must®e, known as an inequality constraint. As a
consequence, all data points should fall on or urttle 45 line y=x in Figure 6, as
demonstrated by the drill hole data. The deposg well drilled with 5,287 samples with the
domain in question.

The middle plot in Figure 6 shows a scatterplo€Cafversus CuCx for an SGS realisation when
each variable was simulated independently. Nag the inequality constraint is not honoured
in this plot as there are significant numbers dhfsabove the 49ine. Caceresgt al. (2011)
found similar outcomes when using sequential Gansso-simulation and MAF on a similar
dataset. The bottom plot in Figure 6 shows a eqatit of Cu versus CuCx for an SGS
realisation using the proposed self-healing metlumyo where the inequality constraint is
honoured.

CONCLUSIONS

A simple method for simulating multiple correlateariables was proposed and demonstrated
using SGS on a polymetallic deposit. In this ngpraach to multivariate simulation, cloud
distributions are used to heal conditional disttidms prior to the simulated normal score being
drawn randomly. The healing process ensures thegalistic conditional distributions are
adjusted to reflect the relationships present i@ ithput data, which does not have to be
exhaustively sampled for all variables.

Limited implementation of this new technique haswh great promise. Early issues of low
variance simulations and poor reproduction of \gnams for secondary variables were noted.
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However, the healing approach was adapted to g&gnily improve these issues. In the case
studies to date cross-correlations at distancesr dttan zero have been reasonably honoured

implicitly.
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Figure 1. Scatterplot of drill hole data hormal reso



CONDITIONAL SIMULATION USING SELF-HEALING

14 e
J" /
’I
z 08 !
= —— 5GS 7
E ----- Global Cloud J
© 06 1 ——5Gslocally healed [
a !
v /
= /
E 0.4 - B
= /
£ /
S d
QO 02 '
7
l”
0 -.—"‘ vl v .
0 0.5 1 1.5 2

Nscore value

Figure 2. Cumulative probability plots
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Figure 3. Scatterplots of drill hole data normzdres.



CONDITIONAL SIMULATION USING SELF-HEALING

. Dom 4*00 Au-Cu Dom 400 Au-As
0oee s g ”“ » < . ,‘" M YR 24 .
=} %) S
O° <°
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
Au Au
- Dom 400 Cu-As
D, |
T
T T T T
-2 0 2 4
Cu
Dom 400 As-Hg
Al e ";.g‘ e
o -
I°

Figure 4. Scatterplots of independent SGS reaissit



9 A.RICHMOND

Dom 400 Au-Cu Dom 400 Au-As

—
~ -
-
E /
o &
+
T T T T T T T T T T
-4 2 0 2 4
Au
Dom 400 Cu-Hg
< - < -
c .
o~ - %3 o~ -
e e
o o
< 4 < 4
T T T T T T T T T T
-4 2 0 2 4 -4 2 0 2 4
Cu As

Figure 5. Scatterplots of SGS realisations usigllhealing based on cloud distributions.
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Figure 6. Scatterplots of total copper versustdelaopper.
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