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ABSTRACT 

There are well established multivariate conditional simulation techniques for correlated 
variables, but most of these methods require a strong assumption of multivariate Gaussian 
distribution, can only be applied to a limited number of variables, and cannot deal adequately 
with complex relationships between multiple variables.  

This paper presents a new multivariate conditional simulation method based on local self-
healing during sequential Gaussian simulation with the aid of cloud distributions.  The 
technique does not require complex initial data transforms and can easily deal with 
heteroscedastic and heterotopic distributions as well as inequality constraints.  This new 
approach to stochastic simulation is demonstrated for a polymetallic deposit and a porphyry 
copper deposit. 
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INTRODUCTION 

Stochastic simulation of multivariate distributions may be desirable for many types of mineral 
deposits, for example, porphyry copper, iron ore, and nickel laterite mineralisation.  
Multivariate spatial data from such deposits may exhibit strong correlations between variables, 
heterotopic distributions, and inequality constraints (Figure 1).  Any analysis or modelling must 
therefore allow for the dependencies that are found in the observed data.  

There are a number of well-established conditional simulation methods for multivariate data, of 
which stepwise conditional transformation (SCT; Leuangthong and Deutsch, 2003) and 
minimum/maximum autocorrelation factors (MAF; Desbarats and Dimitrakopoulos, 2000), are 
most commonly used in the mining industry.  Both of these techniques require an additional 
transformation of spatially located Gaussian datasets that have already been transformed 
independently from the original data space.  The second transformation for SCT considers 
bivariate relationships sequentially to generate zero-lag uncorrelated service variables, whilst 
MAF considers multivariate relationships to generate service variables that are de-correlated at 
all lags under certain conditions.  However, both SCT and MAF may not work effectively in the 
presence of heterotopic distributions and inequality constraints.  Furthermore, locations not 
sampled for all variables are precluded from the secondary transformations. 

This paper presents a new multivariate conditional simulation method based on local self-
healing during sequential Gaussian simulation with the aid of a priori cloud distributions.  The 
technique does not require complex initial data transforms and can easily deal with 
heteroscedastic and heterotopic distributions as well as inequality constraints.  This new 
approach to stochastic simulation is demonstrated for a polymetallic deposit and a porphyry 
copper deposit. 

METHODOLOGY 

Multivariate conditional simulation method based on local self-healing during sequential 
Gaussian simulation with the aid of cloud distributions involves: 

1. Independent Gaussian transformation of each original dataset; 

2. Calculation of the bivariate/multivariate cloud distributions; and 

3. SGS of each variable considering the clouds from step (2), where: 

a. the 1st variable is simulated as normal; and 

b. subsequent variables have the Gaussian distribution from which the simulated 
value is drawn, adjusted (or healed) to reflect the bivariate relationships 
identified in Step (2) above. 

Step (1) above is the standard approach for independent Sequential Gaussian Simulation (SGS), 
SCT, or MAF. 
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For the case studies in this paper the author used a simple probability function based on 
discretisation of scatterplots for the calculation of the cloud function in Step (2) above.  This 
method preserves strong correlations between variables, heterotopic distributions, and 
inequality constraints.  Alternative approaches such as contouring could be considered.   

Step (3) above involves self-healing the SGS (a priori) local distribution at a location x (that is 
defined by the conditional mean and variance) by modifying it to account for the cloud 
functions from Step (2) above.  Modification can involve straightforward Bayesian updating, or 
minimisation of the cross-entropy or some directed divergence measure.  The former approach 
was used by the author for the examples shown in this paper, which involved discretisation of 
the conditional distribution.  As a consequence, the resulting outcomes may vary with: 

1. The level of discretisation used to define the cloud function and SGS-derived 
conditional distribution; and 

2. The ordering of the variables if only bivariate cloud functions are considered.   

By way of example of Step 3(b) above, consider the cumulative probability plots shown in 
Figure 2.  The thin solid line represents a Gaussian distribution for a node based on a 
conditional mean of 1.31 and a conditional standard deviation of 0.74 established by SGS for 
the 2nd variable.  The thin dashed line represents the cumulative distribution of the bivariate 
cloud function for the 2nd variable conditional to the normal score value of 1.35 simulated for 
the 1st variable, as demonstrated from the scatterplot of normal score in Figure 1.  The self-
healed cumulative distribution is represented by the thick line in Figure 2.  For a random 
number of 0.95, the normal score value drawn from the traditional SGS would be 1.55, which is 
slightly above the upper bounds indicated by the data scatterplot in Figure 1.  After self-healing, 
the simulated normal score and for the proposed approach would be 1.46, slightly inside the 
cloud of points in Figure 1.  In simple terms, the proposed approach removes the probability of 
simulating a value outside the defined cloud and redistributes the initial likelihood of these 
improbable outcomes to feasible outcomes that fall within the cloud. 

The author found that multivariate cloud functions resulted in poor quality solutions as the SGS 
conditional distributions were significantly modified, resulting in poor reproduction of input 
variograms.  The use of bivariate cloud functions resulted in the implicit reproduction of all 
cross-correlations, even when all bivariate cloud functions were not considered explicitly. 

The key to producing good solutions was to have an adequate level of discretisation of both the 
cloud function and SGS-derived conditional distribution, and to simulate the variables in 
decreasing degree of correlation (heterotopicity).  

EXAMPLES 

Polymetallic Deposit 

Figure 3 shows scatterplots of normal score transforms of drill hole data for four variables (Cu, 
Au, As, and Hg).  Cu and Au were economic contributors, whilst As and Hg had potential 
detrimental environmental consequences and concentrate penalty issues.  The deposit had 
limited drilling that was widely spaced relative to the spatial correlations.  Note also that a small 
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number of samples did not have As and Hg assays.  The scatterplots in Figure 3 indicate that the 
variables are correlated to various degrees. 

Figure 4 shows scatterplots of the first SGS realisation normal scores when each variable was 
simulated independently.  For these scatterplots, note that: 

• there is a very low correlation between all 4 variables that is not consistent with the 
input drill hole data shown in Figure 3; and 

• there is an apparent artefact at a normal score value of 4 in some plots, which is related 
to a constraint included in the SGS program employed to minimise the potential for 
extreme values. 

Figure 5 shows scatterplots of the first SGS realisation normal scores using the proposed self-
healing methodology.  For this implementation Au was the primary variable, thus Au-Cu, Au-
As, and Au-Hg relationships were considered explicitly during simulation.  For these 
scatterplots, note that the correlations between all 4 variables are in good agreement with the 
corresponding input drill hole data plots shown in Figure 3.  Note also that all data was included 
in the simulation process, even when As and Hg assays were absent. 

Porphyry Copper Deposit 

The top plot in Figure 6 shows a scatterplot of total copper (Cu) versus cold sulphuric acid 
soluble copper (CuCx) for an oxide domain in a porphyry copper deposit.  Note that, due to the 
sequential nature of these assays CuCx must be ≤ Cu, known as an inequality constraint.  As a 
consequence, all data points should fall on or under the 45o line y=x in Figure 6, as 
demonstrated by the drill hole data.  The deposit was well drilled with 5,287 samples with the 
domain in question. 

The middle plot in Figure 6 shows a scatterplot of Cu versus CuCx for an SGS realisation when 
each variable was simulated independently.  Note that, the inequality constraint is not honoured 
in this plot as there are significant numbers of points above the 45o line.  Caceres, et al. (2011) 
found similar outcomes when using sequential Gaussian co-simulation and MAF on a similar 
dataset.  The bottom plot in Figure 6 shows a scatterplot of Cu versus CuCx for an SGS 
realisation using the proposed self-healing methodology where the inequality constraint is 
honoured. 

CONCLUSIONS 

A simple method for simulating multiple correlated variables was proposed and demonstrated 
using SGS on a polymetallic deposit.  In this new approach to multivariate simulation, cloud 
distributions are used to heal conditional distributions prior to the simulated normal score being 
drawn randomly.  The healing process ensures that unrealistic conditional distributions are 
adjusted to reflect the relationships present in the input data, which does not have to be 
exhaustively sampled for all variables. 

Limited implementation of this new technique has shown great promise.  Early issues of low 
variance simulations and poor reproduction of variograms for secondary variables were noted.  
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However, the healing approach was adapted to significantly improve these issues.  In the case 
studies to date cross-correlations at distances other than zero have been reasonably honoured 
implicitly. 
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Figure 1. Scatterplot of drill hole data normal scores. 
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Figure 2.  Cumulative probability plots  
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Figure 3.  Scatterplots of drill hole data normal scores. 
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Figure 4.  Scatterplots of independent SGS realisations. 
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Figure 5.  Scatterplots of SGS realisations using local healing based on cloud distributions. 
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Figure 6.  Scatterplots of total copper versus soluble copper. 

 


