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EVALUATING CAPITAL INVESTMENT TIMING  
WITH STOCHASTIC MODELING OF TIME-DEPENDENT VARIABLES  
IN OPEN PIT OPTIMIZATION 

A. Richmond UDC 622.271 

A new approach to optimizing the timing of capital investment in open pit mines is suggested and 
demonstrated in an application at a large copper deposit. The approach considers explicitly the uncertain 
nature of the commodity price cycle and operating costs that can be modelled via stochastic simulation 
techniques. The stochastic models of prices and costs are fed directly into either a set of nested pits or a 
direct net present value (NPV) optimization algorithm.  This avoids divorcing the delineation of an open 
mine’s pit limit from calculating the related NPV that is common in traditional approaches. 
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INTRODUCTION 

Optimization techniques in open pit mine design have been used for almost 30 years, and form 
today a well established mining industry standard for all related studies. Implementations of the 
Lerchs-Grossman algorithm [1], network flow [2], pseudoflow network models [3], mixed integer 
programming [4 – 7], and others, involve converting a 3D grid of regular blocks representing an 
orebody to be mined into a payoff matrix by considering mineral grades, as well as economic and 
mining parameters. These algorithms rely on mining block payoffs to average linearly, but the net 
present value (NPV) of block payoffs is a non-linear function of the undiscounted block payoffs, and 
depends on the discount applied to the individual blocks, which in turn depends on the mining 
schedule. To overcome the issue of discounting block payoffs, traditional implementations of open pit 
optimization algorithms are designed, using a single estimated orebody model, to find a set of nested 
open pit limits that maximize the undiscounted financial payoff for a series of constant commodity 
prices. The maximum NPV open pit limit is then derived by considering alternate mining schedules, 
usually only the best and worst cases, for each open pit limit. This two-step approach raises three 
significant issues: (a) separating the open pit limit delineation from the NPV calculation does not 
guarantee that an optimal (maximum) NPV open pit solution will be found; (b) NPV calculations are 
based on constant commodity prices and operating costs that fail to consider their time-dependent and 
uncertain nature; and (c) the single “estimated” ore body model is invariably smoothed, thus it fails to 
consider short-scale grade variations. This implies that the block model does not accurately reflect the 
grade and tonnage of ore that will be extracted and processed during mining.  

To overcome this inadequacy of undiscounted payoffs, Richmond [8] proposed embedding a 
scheduling heuristic within an open pit optimization algorithm. This may be seen as an alternative to 
mixed integer programming approaches [4 – 7] that may become numerically demanding in the case of 
large deposits. As a consequence, uncertain and time-dependent variables, such as commodity prices 
and operating costs, can also be incorporated stochastically into the optimization process. This permits 
strategic options for project timing and staging to be assessed as discrete optimization problems and 
compared quantitatively, and is more advanced than other recent approaches [9 – 11]. Multiple 
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conditional simulations in the optimisation process should, in addition, be considered, so that the 
mining and financial implications related to small-scale grade variations are honored [[11 – 15]. By 
considering discounted block payoffs, stochastic models of commodity prices and operating costs, as 
well as short-scale grade variations, a more accurate discounted payoff matrix (revenue block model) is 
generated, which in turn will yield an open pit limit that will be closer to the true optimum. 

NPV CALCULATIONS WITH UNCERTAIN VARIABLES 

Calculation of the NPV for a given open pit limit relies on estimates of numerous parameters, 
including, but not restricted to, the mineral grades, extraction sequence and timing, mineral recovery, 
prevailing commodity price, and capital and operating costs. All of these parameters are uncertain and 
should be modelled stochastically. For example, mineral grade values by geostatistical simulations, 
operating costs with growth functions, and commodity prices using long-term mean reverting models 
that account for well known periodicity. Consequently, the cumulative distribution of total financial 
payoffs for an open pit limit can be derived from the combination of a series of stochastic models of 
mineral grades, costs, prices, recoveries, etc. 

Given L potential NPV outcomes for a block (related to L realisations of grade values, commodity 
prices, operating costs, etc), we can calculate the NPV for any realisation l:  
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where B is the number of blocks under consideration; )( j
l bd  is the discounted value for block jb  for the 

l realisation; and 1=ji  if jb  falls within the open pit limit and 0 otherwise. The idea is to find the open 
pit limit that maximizes NPVL. Additional financial goals, for example minimizing downside risk [16] 
could also be considered, but are outside the scope of this paper. 

ACCOUNTING FOR MULTIPLE ORE BODY MODELS 

Pit optimization algorithms found in the literature invariably consider an ore body block model 
with a single grade value for each block (or parcel). In such an approach, a simple decision rule is used 
where block jb  is processed using option k if u

kj
l
k gbzg <≤ )(* , where kg  is the cut-off grade for 

processing option k (by convention 01 =g  and k = 1 indicates waste), and *z  is the estimated grade 
value. To account for grade uncertainty in open pit optimization, Richmond [16] proposed 
incorporating L conditionally simulated grade values for each block. In this approach, multiple grade 
values )( j

l bz , l = 1,…, L were generated by conditional simulation [17 – 20], and a processing option 

)( j
l bk  was determined for each realisation. Alternatively, conditional simulation provides short-scale 

grade variations that permit local ore loss and mining dilution to be readily accounted for in an open pit 
optimization by [16] (a) generating geometrically irregular dig-lines (that separate ore and waste) based 
on small-scale grade simulations with a floating circle algorithm; and (b) assimilating the dig-lines into 
large-scale geometrically regular blocks by a novel re-blocking method. This two-step approach 
accounts for short-scale grade variation, but also provides “recoverable” grade and tonnage information 
for large regular blocks suitable for open pit optimization. In other words, the simulated grade models 
are compressed without loss of accuracy so that optimization is computationally tractable. 
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Fig. 1. Directed graph representing two-dimensional vertical ore body model 

AN NPV OPEN PIT OPTIMIZATION ALGORITHM 

For the vast majority of open pit optimization techniques, a directed graph is superimposed onto 
the payoff matrix to identify the blocks that constitute an optimal open pit limit. To paraphrase Dowd 
and Onur [21], each block in the grid, represented by a vertex, is assigned a mass equal to its net 
expected revenue. The vertices are connected by arcs in such a way that the connections leading from a 
particular vertex to the surface define the set of vertices (blocks) that must be removed if that vertex 
(block) is to be mined. A simple 2D example is shown in Fig. 1. Blocks connected by an arc pointing 
away from the vertex of a block are termed successors of that block, i.e. bi is a successor of jb  if there 
exists an arc directed from jb  to ib . In this paper, the set of all successors of jb  will be denoted as jΓ . 
For example, in Fig. 1, 8Γ  = [17]. A closure of a directed graph, which consists of a set of blocks B, is 
a set of blocks BBp ⊂  such that if pj Bb ∈  then pj B∈Γ . For example, in Fig. 1, }13,97,51{ −−=pB  
is a closure of the directed graph. The value of a closure is the sum of the payoffs of the vertices in the 
closure. As each closure defines a possible open pit limit, the closure with the maximum value defines 
the optimal open pit limit. 

For simplicity of notation, the algorithm proposed in this paper is described for a single ore body 
model. The undiscounted payoff matrix }),({ Bbbw ∈  typically used for open pit optimization is 
calculated as: 

 ))((ton)({ kkb crbvzbw −= , (3) 

where bton  represents the tonnage of block b; v is the commodity (attribute z) value per concentration 
unit; kr  is the proportion of the mineral recovered using processing option k; and kc  is the mining and 
processing cost for k ($/ton). In practice, kr  and kc  commonly vary spatially, and v and kc  temporally. 
The discounted payoff matrix }),({ BbSbd ∈ , conditional to a mining schedule S, that is required for 
NPV open pit optimization is calculated as: 

 t
tkktb DRcrbzvSbd )1/()])((ton[)( , +−= , (4) 

where t is the time period in which block b is scheduled for extraction and processing; tv  and tkc ,  are 
the prevailing commodity price and operating cost at time t; and DR is the discount rate. In Eq. (4), 
discounted payoffs are conditional to the mining schedule, as alternate schedules can be derived for the 
same open pit closure. It is also important to note that cut-off grades, and consequently the processing 
option k, may change in response to commodity price and operating cost fluctuations over time. The 
traditional floating cone algorithm is a way to decompose the full directed graph problem into a series 



 230

of independent evaluations of individual jΓ , and if the sum of the payoffs associated with Γj is 
positive, then jb  is added to pB . However, a positive undiscounted value for jΓ  does not imply that 
the discounted value for jΓ  is positive. In other words, negatively-valued successors ib  of block jb  
that may be mined significantly earlier in the mining schedule, and receive substantially less 
discounting, may not be carried by a more heavily discounted positively-valued jb . Furthermore, the 
modified schedule may have shifted more profitable jb  into later periods, and additional waste blocks 
into earlier periods, reducing the discounted value of the pit. As a consequence, NPV optimization with 
the FCA must consider the directed graph problem globally rather than the traditional independent 
evaluation of locally decomposed jΓ . To allow for discounting, Richmond [22] proposed a direct NPV 
floating cone algorithm (DFC) that proceeds as follows: 

1. Select the time for initial investment (start of construction) It . 
2. Define a cone that satisfies the physical constraints of the desired open pit slope angles. 
3. Define an ordered sequence of visiting blocks [1, 2,…, Б < B] with positive w(b), by ordering the 

blocks ib  firstly on decreasing elevation, and then for blocks with identical elevations on decreasing 
value in )( ibw . 

4. Set the open pit closure counter n = 0, the initial open pit closure n
PB  to a null set of blocks, and 

the net present value of initial open pit closure NPV n = 0. 
5. Set j = 0.  
6. Set j = j + 1. 
7. Float the cone to jb  to create a new closure j

n
P

n
P BB Γ+=+1  (excluding from jΓ  any block that 

currently belongs to n
PB ). 

8. Determine the schedule S for the new closure 1+n
PB . 

9. Calculate the discounted payoff matrix }),({ 1+∈ n
PBbSbd  using Eq. (4) and the net present 

value of the new closure using Eq. (1). 
10. Accept the new closure if 01 >−+ nn NPVNPV , whereupon the current closure is updated into 

a new optimal closure, i.e. 1+= nn , and go to step 5. 
11. If Бj < , the number of blocks with positive payoffs )(bw , then go to step 6. 
The version of the floating cone algorithm presented above is heuristic in nature and may not 

generate an optimal solution. Alternate Bp can be generated by varying the initial investment timing 
(step 1), the ordered path (step 3), and/or the mining schedule (step 8). 

Timing of investments to satisfy corporate constraints, or to take advantage of cyclical commodity 
prices, can be investigated as mutually exclusive opportunities by varying It , which modifies the 
mining schedule in step 8 above. For example, given a schedule S commencing at t = 0, the modified 
schedule Ittt +=′ . For delayed investment, the NPV for many potential production assets will 
typically be reduced unless maximum production/grade happens to coincide with the peak in cyclical 
commodity prices. However, for a risk-averse and capital-constrained company, the shift of the capital 
cost into future years may be strategically advantageous when considered in conjunction with their 
portfolio of mining assets. Re-initiating the test sequence from the top of the mineral deposit each time 
a positively valued cone is found and added to the closure is generally regarded to estimate the 
heuristic maximum undiscounted payoff solution [23]. Computational experimentation on the ordering 
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of blocks in step 3 above suggested that this also holds true for the discounted case when It  is fixed. 
Note that, due to re-initiation of the test sequence, it is common for n

P
n
P BB =+1  in step 7 above. For 

such instances, steps 8 – 10 are ignored.  Note that, as it is well known, the floating cone algorithm may 
not return the maximum undiscounted payoff solution. However, Richmond [22] used the algorithm 
presented above to generate physically feasible solutions; it is also the approach adopted in this study. 
The author has not investigated whether the Lerchs-Grossman [1] and network flow algorithms [3] 
could be substituted for the floating cone algorithm, but the non-linearity of the proposed objective 
function may present some difficulty. The computational efficiency of the proposed algorithm is 
enhanced significantly when a simple scheduling algorithm in step 8 above is employed. However, 
more complex risk-based scheduling algorithms, to account for multiple orebody models and 
production goals [24] could be considered. 

APPLICATION AT A COPPER DEPOSIT 

This section demonstrates the proposed concepts for a large sub-vertical copper deposit. The 
geometry and contained copper per level are variable, but there is no strong trend. The options 
considered in this study were:  
• two processing options (ore and waste), i.e. K = 2; 
• 60 Mt/year mill constraint; 
• 25 realizations of copper grades by sequential Gaussian simulation (SGS); 
• 25 stochastic simulations of future copper prices with a two factor Pilipovic model that was 

modified to account for periodicity and cap and collar aversion (Fig. 2); 
• 25 stochastic simulations of operating costs with a growth model (Fig. 2); 
• monthly copper recoveries randomly drawn from normal distribution with a mean of 80% and a 

standard deviation of 1%2;  
• a fixed annual discount rate of 10 %; and 
• initial investment timings at discrete yearly intervals for 5 years. 
In this case study, two scenarios are considered: (1) Currently near the peak of the price cycle and 

higher uncertainty; and (2) currently near the bottom of the price cycle and lower uncertainty. Figure 2 
shows 25 stochastic simulations of future copper prices for the two scenarios. The assumptions in this 
study were: (1) a long-term copper price of $1.30/lb; (2) the present time $2.50/lb (Scenario 1) and 
$0.70/lb (Scenario 2); (3) an average 8 year copper price cycle; (4) and $0.50/lb and $3.00/lb lower and 
upper aversion values. Note that as time increases, uncertainty in the simulated copper price increases, 
while the periodicity in the average simulated value and its deviation from the long-term price 
decreases. The average copper price does not fluctuate symmetrically around the long-term copper 
price due to the asymmetrical aversion limits. Note that current copper prices and forecast price ranges 
have not been used, to maintain project confidentiality. Figure 2 also shows 25 stochastic simulations 
of waste and ore processing costs. 

To assess the potential change in NPV against the traditional two-stage pit optimization approach, 
a base case scenario ($1.30/lb; 80 % recovery, $1.90/t waste cost and $8.50/t milling cost) was run to 
generate a series of nested pits using a FCA. The E-type (or average) of the 25 SGS realizations was 
adopted as the single grade model, as it is known to be smoothed. The NPV for this series of pits uses 
the base case assumptions shown in Fig. 3 as crosses. The maximum NPV under the base case scenario 
is associated with a pit closure of 26 402 blocks. Note that the capital cost, which could also be 
modeled stochastically, was not included in this study. 
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Fig. 2. Stochastic simulations of time dependent variables 

 
Fig. 3. Pit size versus NPV: FCA — floating cone algorithm; DFC — direct NPV FCA 

The NPV for the FCA nested pits was also calculated using the simulated grades, metal prices, 
costs and recoveries for the six annual investment timings, shown in Fig. 3. Note that (a) these curves 
vary substantially from the base case; (b) for Scenario 1, in all instances the maximum NPV pit is 
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significantly larger (49 239 – 85 093 blocks) than the base case and the maximum NPV is higher than 
for the base case; (c) for Scenario 1, delaying the investment from Year 3 to Year 5 results in a higher 
NPV ($3.02bn versus $2.88bn). At first this relationship may appear counter-intuitive as both costs and 
discounting are greater, however, it is related to the cyclically higher Cu prices in key production 
periods; (d) for Scenario 2, the maximum NPV pit sizes (15 878 – 38 707 blocks) vary around the base 
case size (26 402 blocks), but the maximum NPV is higher than for the base case up to Year 3; and, (e) 
for Scenario 2, delaying the investment in Years 1 to 3 all result in a higher NPV than for Year 0. 

The NPV of the proposed DFC approach for the six annual investment timings for Scenario 1 is 
also shown in Fig. 1. Note that considering the mining schedule explicitly in the optimization process 
meant that it was successful in finding the maximum NPV pit in a single run. Whilst the improvement 
over the maximum NPV pit from the two-step approach that considered the stochastic inputs was 
limited (usually <0.5% in NPV), there was often some difference in the pit dimension. It is likely that 
these differences would be reduced further if additional pit closures had been generated for evaluation 
in the two-step approach. Computationally, it was more efficient to post process a finite series of pit 
closures than embed the scheduler in the pit optimization process. In the example shown, the DFC 
approach that generated a single pit required around the same computational time as that required in 
generating 36 nested pits by a simple FC approach. 

CONCLUSIONS 

A novel method for working with discounted payoff matrices during open pit optimization 
proposed by Richmond [22] was demonstrated. The approach used in this study embedded a simple ore 
scheduler in a floating cone-based heuristic algorithm. It was a trivial exercise to further consider 
multiple ore body models, local ore loss and mining dilution, time-dependent commodity prices and 
costs, and variable metal recoveries during optimization. As a consequence, alternate project 
development timings could be strategically assessed. Traditional evaluation of a set of nested pit shells 
with constant metal prices and operating costs failed to determine the maximum NPV pit under 
uncertain conditions. However, provided that sufficient pit shells were generated and evaluated with 
the same stochastic price and cost input as for the proposed algorithm, there was little difference in the 
maximum NPV shell derived. Evaluation of alternate scenarios based mainly on variations in the 
current price cycle indicate that both the NPV and size of the maximum NPV is strongly influenced by 
the prevailing point in the price cycle at commencement of the mining operation. 

This study demonstrated that uncertainty in future metal prices and operating costs cannot be 
adequately captured in open pit optimization by simply post-processing a series of nested pit closures 
with constant values. Stochastic modeling of mineral grades, mineral recovery, commodity prices, and 
capital and operating costs provide an ideal platform to: 

1. Generate an optimal pit to maximise the overall project NPV considering geological and market 
uncertainty;  

2. Determine the optimum investment and project start up timing; and 
3. Quantify the multiple aspects of uncertainty in a mine plan. 
The example studied in this paper indicates periods of potential financial weakness that could 

benefit from management focus (e.g. forward-selling strategies, and placing the mine on care and 
maintenance) prior to difficulties arising. 
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