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ABSTRACT
Geometallurgical modelling is now a hot topic in deposit evaluation and
in optimising mine performance; however, its history is long and varied.
Historically metallurgical sampling has frequently suffered from a lack of
data due to the cost of producing representative bulk samples. In the early
1990s geometallurgical modelling similarly suffered from a lack of data
due to complex, time consuming and expensive sampling techniques.
More recently, simple and relatively cheap tests for geometallurgical
variables such as hardness, grindability, throughput, SAG power index,
bond work index, crushing index, mineral recovery and concentrate grade
have become widespread. The cheaper sampling has resulted in relatively
large geometallurgical databases. However, most of the geometallurgical
variables sampled are implicitly (and incorrectly) assumed to be additive
when modelled by traditional geostatistical techniques, often leading to
ill-informed and costly decisions. Geometallurgical variables are mostly
non-additive so the current geostatistical challenge is to develop new
approaches to dealing with this type of data.

This paper briefly describes a historical case study of geometallurgical
modelling of the George Fisher Pb-Zn mine completed in the mid 1990s,
then outlines some of the current misconceptions of geometallurgical data
and modelling techniques regularly applied to it, and finally discusses
some recent developments in geometallurgical modelling, with examples
from a number of current clients indicating the direction forward.

INTRODUCTION

This paper asks a number of questions to provide a snapshot of
what geometallurgical modelling means from a mining geology
perspective, and where it is going. In developing mining projects
the role of important disciplines such as geology, geostatistics,
mine planning and metallurgy have long been clearly defined.
Many operations now see advantages in forming cross-discipline
teams to address questions like ‘How can we optimise particle
size reduction from the mine, through the mill?’, or ‘How can we
ensure that studies of energy demands for a mine site are based
on good data, interpreted correctly?’. Understanding where
geometallurgical modelling is heading will allow us to collect
better data now to solve future questions.

Traditional planning of mines and scheduling of production is
largely based upon the modelling of ore grade. It is known,
however, that grade is not the only characteristic that can be
taken into account to maximise performance at the processing
plant and efficiency of tailings disposal. Ore processing plants
respond well to feed that is consistent over time and that has
known physico-chemical characteristics, which can be used to
improve plant design and performance through the management
of plant variables. Ore texture complements grade and
influences, or is a measure of, mineral liberation properties, ore
grindability, concentrate properties, disposal characteristics, and
other properties, which collectively characterise the metallurgical
behaviour of the ore. Furthermore, in an operational sense, even
with the most sophisticated plant control system and mining
practices, a response lag occurs between the measurement of an
ore processing characteristic and the corrective action required.
During this lag time an opportunity exists to maximise the profit
of the resource by introducing a predictive ore control strategy.

A few of the geometallurgical variables currently being used
or considered include:

• ore mineralogy,

• gangue mineralogy,

• textures and liberation,

• grindability,

• hardness and size distribution,

• bond work index,

• SAG power index,

• tonnes per hour throughput,

• A*b,

• RMR rock mass rating/Barton Q index,

• Davis tube recovery,

• hydrothermal alteration – ‘clay’ mineralogy and abundance,

• acid-consuming mineralogy/cyanide consumption,

• concentrate grade and quality,

• solubility ratio,

• trace element geochemistry/mineralogy – deleterious elements
or by-products, and

• acid producing sulfides in waste piles.

For some of these variables it is reasonable to ask at what scale
are these measurements representative. For example, is a
flotation test a grain by grain determination, or is it influenced by
the volume of the original sample? The answer influences how a
5 kg (bench test) result or a 100 kg (pilot plant test) result can be
scaled up to a 5000 t mining block. We know that variables such
as recovery, strength, liberation, texture, grain size and size
breakage distribution curves have a different support to the usual
grade samples that we model everyday.

In the 1990s approaches to dealing with geometallurgical
information were generally related to one or two variables
considered most critical to the metallurgical performance or a
proxy (eg ore texture) that contained implicitly information on
many aspects of mining, metallurgical and tailings disposal
performance. With the more widespread collection of
geometallurgical information such as hardness, grindability,
throughput, SAG power index, bond work index, crushing index,
mineral recovery and concentrate grade, geometallurgical
modelling is becoming more mainstream. The authors have
noted that these non-linear geometallurgical variables are
typically (and incorrectly) modelled through the application of
standard geostatistical techniques that have long been
successfully applied to linear or additive grade attributes.

The issue of non-linearity of geometallurgical attributes can be
demonstrated by considering the Kulbeka-Munk function for
kaolin reflectivity, shown in Figure 1. In this example, the two
direct reflectivity measurements of 60 per cent and 90 per cent
would have a linear average of 75 per cent. However, in reality a
mixture of kaolin comprising equal portions of 60 per cent and
90 per cent reflectivity results in a kaolin product with a
reflectivity of around 69 per cent. The difference between
assuming linearity (75 per cent) and reality (69 per cent)
translates into an outcome of a saleable versus a non-saleable
product.
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A 1990s APPROACH

The technical literature provides substantial information on the
link between ore texture and metallurgical behaviour. If the
metallurgical properties of ore and the ore’s texture are
intimately linked, then the time-dependent variability of ore
behaviour in the mill feed is directly related to the
space-dependent variability of textures in the orebody. If ore
textures can be recognised, measured and quantified in spatial
models, then ore texture models can form the basis for
predicting, simulating and controlling the time-dependent
variability of the ore behaviour in the mill feed.

Richmond (1998) presented an approach to the spatial
modelling of ore textures from suitable measurements, thus
potentially enabling predictive ore control strategies to be
implemented for ore processing. The modelling framework was
founded upon four factors:

1. definition of ore textures at a practical scale (mesotextures),

2. Characterisation of spatial continuity of mesotextures,

3. stochastic simulation of mesotextures at a fine scale, and

4. construction of predictive mesotexture models at the required
mining scale from the simulated fine scale textures.

Figure 2 shows examples of ore textures at various scales at
the George Fisher Pb-Zn mine in Queensland, Australia.
Metallurgical and mineralogical investigations had clearly
demonstrated that metallurgical behaviour was a function of ore
microtextural composition. However, it was not realistic to
collect and model ore texture data at this scale. Consequently,
and based on substantial mineralogical work, it was assumed that
ore mesotextures, independent of their spatial location, were
composed of the same relative abundances of ore microtextures.
This assumption allowed practical measurement of implicit
metallurgical behaviour at the core scale, which could then be
increased further to the mining scale through the application of
appropriate modelling techniques.

For the simulation of ore mesotextures, a new sequential
‘growth’ algorithm extending the so-termed sequential indicator
simulation or SIS was developed. The method mimics a natural
process of ‘informed’ growth in a spatial pattern and generates
geologically plausible patterns. Figure 3 shows two simulated
models of nine mesotextures over an area of 90 m by 150 m,
both based on mesotexture data identified in the core of the
same drill hole fan at the George Fisher mine. The simulated
model of ore texture in Figure 3 (left) is based on the
off-the-shelf SIS method and was considered by the mine’s
geologists as unrealistic for the textures encountered at the
mine. Figure 3 (right) is generated with the sequential ‘growth’
algorithm mentioned above. Visually, the differences in the two
images are clear and due to the ability of the new algorithm to
better account for complex, short-scale spatial relations among
the ore mesotexture types. The modified SIS algorithm was
shown to be suitable for implementation and excellent in
performance, thus potentially assisting with the spatial modelling
of ore textures and the implementation of predictive ore
characterisation and processing strategies.
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FIG 1 - Kulbeka-Munk function for kaolin reflectivity.
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FIG 2 - Relationship between data and scale for ore textures at George Fisher mine.



OTHER POTENTIAL MODELLING APPROACHES

Most well-known simulation algorithms (eg sequential Gaussian
simulation, SIS, plurigaussian, turning bands, etc) reproduce
only two-point statistics, leading to often poor reproduction of
the true spatial characteristics of the phenomenon under
consideration. The growth SIS algorithm described earlier
improved implicitly the multiple-point statistics of the ore
mesotexture simulations. However, simulation algorithms that
consider multiple-point statistics explicitly (eg Strebelle, 2000)
could be substituted if required. Alternatively, a pattern-based
simulation algorithm (Arpat, 2005; Arpat and Caers, 2004)
shows considerable promise for categorical variables such as ore
textures.

Dealing with geometallurgical data of vastly different volume
support is critical, especially when limited data is available for
estimation. The authors typically see such information grouped
together without due consideration or deliberate ignorance of the
problem. Godoy (personal communication) has developed an
estimation technique, called bulk kriging, for dealing with data
of vastly different volume support. Bulk kriging is analogous to
the well established direct block simulation algorithm (Godoy,
2002) and relies on the selection of a model of coregionalisation
that jointly honours linear data at all volume supports. A method
such as bulk kriging is critical in dealing appropriately with data
of different volume support, however, it also relies on linearity of
the data.

For non-linear data one possible approach to geometallurgical
modelling would be to retain the complete distribution of
information using indicator-based geostatistical techniques. For
these methods the probability of exceeding various thresholds is
estimated. This has the benefit of turning non-linear data (when
the full spectrum of data is considered) into multiple potentially
linear data sets between adjacent thresholds, provided that the
thresholds are appropriately spaced. At the very least, the poor
outcomes that result from assuming non-linearity of the variable
in question is minimised during any change of scale attempt.
Single models of geometallurgical attributes can be generated by
indicating kriging or one of its variants (probability kriging,
indicator co-kriging, successive co-indicator kriging, etc).
Alternately, multiple realisations of the attributes could be
generated through SIS or more rapidly by successive co-indicator
simulation (Vargas-Guzman and Dimitrakopoulos, 2002, 2004).

Kaolin brightness is a non-linear variable that has been
successfully modelled for mining operations (Peroni, Costa and
Koppe, 2000, 2003). For this work, data was transformed using
the Kubelka-Munk function (F(R)=[(1-R)2]/2R), then conditional
simulation proceeded in transformed space. Finally the
simulations were transformed back into real space with the
Kubelka-Munk function. Critically, the Kubelka-Munk function
is known to be scale (volume) invariant.

Power averaging based on experimental calibration has been
applied successfully to averaging permeabilities in oil reservoirs
(eg Deutsch, 1986; Journel, Deutsch and Desbarats, 1986).
Power averaging is a non-linear averaging technique based on a
power law, where avew=ave(valuesw).

CASE STUDIES

Without specifically mentioning the operations, the following
examples show the range of issues that could be addressed by
geometallurgical modelling and the consequences of insufficient
understanding of the relationship between geology and metallurgy
(or mineral processing).

Copper sulfide ores

During a major expansion of a copper project in South America
there was extensive evaluation of the Mineral Resource, Ore
Reserves and various other aspects that may affect the economics
of the expansion. Extensive geometallurgical work was
undertaken to evaluate the relationship between hardness,
crushing and grinding. An unexpected consequence of the mine
expansion was the appearance of more clayey ore in one corner
of the pit. This was found to have a high talc content that resulted
in suppressed copper recovery (quickly recognised and well
managed) but also created more slimes in the tailings dam.
Difficulties in dewatering such slimes would have a significant
impact on water use, the volumes estimated for tailings storage,
the environmental permitting to enable further tailings storage,
and possibly the mine life. The geometallurgical approach to
solving this problem was to consider the source of the problem
material, map and model it in 3D and then integrate this material
into the mine schedule in such a way that blending could reduce
the impact of the material in generating slimes. The
geometallurgical studies in this case included geology,
mineralogy (using PIMA spectroscopy to identify the clay
minerals) and bench scale metallurgical test work. The mining
solution was a consequence of a better understanding of the
orebody and how it behaved in the mill.

Magnetite ores

Magnetite ores are frequently defined using the Davis Tube test
that determines the amount of mineral retained in a magnetic
field after grinding and washing under controlled physical
conditions. This retained material is then available for
determination of the chemical composition of the material
expected to be produced by the metallurgical processing plant.
The value of doing many samples is that the relationship between
magnetite and silica at mineral grain boundaries may vary locally
in the deposit. This spatial variability can be defined using many
small, equivalent samples, perhaps related to geological features
in the deposit, and modelled using geostatistical estimation
techniques. A Satmagan test is a physical test that defines the
amount of magnetite in a drill sample but does not provide a
concentrate for assay.

Bauxite ores

Bauxite ores are easily defined in terms of their whole rock
chemistry and mineralogy; however, predicting the performance
of ores in a plant using the Bayer process depends on the demand
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FIG 3 - Ore texture simulation generated by using: (left) the off-the-
shelf SIS algorithm; and (right) the extended SIS algorithm with

sequential ‘growth’.



for caustic soda. So geologists spend considerable time trying to
determine and predict the reactive silica (RxSiO2) and the
available alumina (ABAE), which varies depending on the
temperature adopted during measurement.

Various

The need to predict the particle sizes or agglomeration
characteristics for heap leach operations (gold projects in
Western Australia (WA) and laterite nickel project in
Queensland); the relationship between talc, arsenic and nickel
(sulfide nickel projects in WA); or the impact of narrow
subvertical enargite veins on arsenic grades in Chilean porphyry
copper deposits indicate the many interacting factors that may
impact on plant performance.

CONCLUSIONS

There are many cases in mining where identification of the
geology, chemistry and the ore minerals is relatively simple, but
the prediction of the behaviour of the whole rock in the
metallurgical process is very complex. As geometallurgical
modelling becomes more mainstream we need to ensure that the
mining community does not become disillusioned with the
results due to poor modelling practices. The authors have audited
several geometallurgical models in which non-linear variables
have been treated as linear implicitly by the selection of
estimation method. These and other geometallurgical models
have commonly been discredited during reconciliation studies.
For example, Ashley and Callow (2000) described several case
studies in which poor geometallurgical investigations led to
inadequate plant design. All of these examples were traced back
to poor sample selection and representivity issues.

The current challenge is to gain widespread acceptance of
geometallurgical modelling using robust geostatistical techniques.
Some key issues include:

1. Cross-discipline teams are typically required to address all
components.

2. The issue of non-additive data is considered explicitly in
the modelling process.

3. Few estimation techniques are directly applicable to
geometallurgical attributes.

4. Geometallurgical models need to be generated at a suitable
mining scale.

5. Procedures used for change of scale are either in linear
space or are scale invariant.

6. The geometallurgical models are initially required to
support long-term strategic planning. However, strategic
metallurgical decisions will only have value if the same
decisions can be made tactically in the grade control
environment.

The question is how are we are going to get there?
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